
Tool Support for Human-AI Collaboration
in Qualitative Data Analysis

Submitted by

Jie GAO

Thesis Advisors

Dr. Simon PERRAULT

Information Systems Technology and Design Pillar

A thesis submitted to the Singapore University of Technology and Design in
fulfilment of the requirement for the degree of Doctor of Philosophy

2024

i

PhD Thesis Examination Committee
Advisor: Dr. Simon PERRAULT

TEC Chair: Prof. LU Wei
Internal TEC member 1: Dr. Dorien HERREMAN

Internal TEC member 2: Dr. LIM Kwan Hui

ii

Abstract
Information Systems Technology and Design Pillar

Doctor of Philosophy

Tool Support for Human-AI Collaboration in Qualitative Data Analysis

by Jie GAO

Qualitative data analysis, a crucial subset of data analysis, extracts insights from
unstructured data through systematic methods. It plays a significant role in diverse
fields such as social science, psychology, and educational research. With the rapid
evolution of Artificial Intelligence (AI) and Large Language Models (LLMs), leveraging
AI, particularly LLMs, in qualitative analysis has gained considerable attention. The
synergy between LLMs and human analysts in producing in-depth interpretations is
becoming more and more important.

This PhD thesis, initiated before the advent of LLMs, delves into the then-niche area
of AI-assisted qualitative analysis. It investigates the potential of AI in augmenting
collaborative qualitative analysis, focusing on human-to-human and direct human-AI
collaboration. The thesis is structured into two main sections: 1) developing innovative
collaborative workflows for qualitative coding teams, integrating multiple humans and
AI models, and 2) enhancing trust and reliance dynamics within human-AI teams by
analyzing their interactions.

More specifically, I will begin by setting the context and motivations for this burgeoning
field, followed by an overview of the core theoretical frameworks in qualitative analysis.
Subsequently, I will introduce the design and development of two CQA systems, CoAIcoder
and CollabCoder, along with the associated studies and evaluations. Lastly, I will
present an empirical study examining the trust and reliance dynamics between humans
and AI in a qualitative analysis context.

iii

Publications
In reverse chronological order:

1. Jie Gao, Yuchen Guo, Gionnieve Lim, Tianqin Zhang, Zheng Zhang, Toby Jia-Jun Li,
and Simon Tangi Perrault. 2023. CollabCoder: A Lower-barrier, Rigorous Workflow
for Inductive Collaborative Qualitative Analysis with Large Language Models. ACM
CHI conference on Human Factors in Computing Systems (CHI’24). https://

doi.org/10.48550/arXiv.2304.07366

2. Jie Gao, Kenny Tsu Wei Choo, Junming Cao, Roy Ka-Wei Lee, and Simon Perrault.
2023. CoAIcoder: Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis. ACM Transactions on Computer-Human
Interaction (TOCHI) 31.1 (2023): 1-38. https://doi.org/10.1145/3617362

3. Jie Gao, Yuchen Guo, Toby Jia-Jun Li, and Simon Tangi Perrault. 2023. CollabCoder:
A GPT-Powered WorkFlow for Collaborative Qualitative Analysis. In Companion
Publication of the 2023 Conference on Computer Supported Cooperative Work and
Social Computing (CSCW ’23 Companion). Association for Computing Machinery,
New York, NY, USA, 354–357. https://doi.org/10.1145/3584931.3607500

4. Jie Gao, Junming Cao, ShunYi Yeo, Kenny Tsu Wei Choo, Zheng Zhang, Toby Jia-Jun
Li, Shengdong Zhao, and Simon Tangi Perrault. 2023. Impact of Human-AI Interaction
on User Trust and Reliance in AI-Assisted Qualitative Coding. https://doi.

org/10.48550/arXiv.2309.13858 (Under review)

5. Zheng Zhang, Jie Gao, Ranjodh Singh Dhaliwal, and Toby Jia-Jun Li. 2023. VISAR:
A Human-AI Argumentative Writing Assistant with Visual Programming and Rapid
Draft Prototyping. In Proceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology (UIST ’23). Association for Computing Machinery,
New York, NY, USA, Article 5, 1–30. https://doi.org/10.1145/3586183.

3606800

6. Nuwan Janaka, Jie Gao, Lin Zhu, Shengdong Zhao, Lan Lyu, Peisen Xu, Maximilian
Nabokow, Silang Wang, and Yanch Ong. 2023. GlassMessaging: Towards Ubiquitous
Messaging Using OHMDs. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies (IMWUT’23). 7, 3, Article 100 (September 2023), 32
pages. https://doi.org/10.1145/3610931

7. Junming Cao and Bihuan Chen and Longjie Hu and Jie Gao and Kaifeng Huang
and Xin Peng. 2023. Characterizing the Complexity and Its Impact on Testing in
ML-Enabled Systems - A Case Study on Rasa. 2023 IEEE International Conference

https://doi.org/10.48550/arXiv.2304.07366
https://doi.org/10.48550/arXiv.2304.07366
https://doi.org/10.1145/3617362
https://doi.org/10.1145/3584931.3607500
https://doi.org/10.48550/arXiv.2309.13858
https://doi.org/10.48550/arXiv.2309.13858
https://doi.org/10.1145/3586183.3606800
https://doi.org/10.1145/3586183.3606800
https://doi.org/10.1145/3610931

iv

on Software Maintenance and Evolution (ICSME’23), Bogota, Colombia. https:

//doi.org/10.1109/ICSME58846.2023.00034

8. Jie Gao, Xiayin Ying, Junming Cao, Yifan Yang, Pin Sym Foong, and Simon Perrault.
2022. Differences of Challenges of Working from Home (WFH) between Weibo and
Twitter Users during COVID-19. In Extended Abstracts of the 2022 CHI Conference
on Human Factors in Computing Systems (CHI EA’22). Association for Computing
Machinery, New York, NY, USA, Article 259, 1–7. https://doi.org/10.1145/
3491101.3519790

https://doi.org/10.1109/ICSME58846.2023.00034
https://doi.org/10.1109/ICSME58846.2023.00034
https://doi.org/10.1145/3491101.3519790
https://doi.org/10.1145/3491101.3519790

v

Acknowledgements
This thesis would not have been possible without the love and support of many

individuals and groups who formed my support system. They offered guidance and
support, both emotionally and professionally, playing a crucial role in my journey. In
particular, I would like to express my thanks to:

1. My PhD advisor: Dr. Simon Perrault. In early 2019, while seeking PhD positions
in HCI, I faced significant challenges. My skills in programming, coding, and data
analysis, though rare, were underdeveloped, and my research experience was almost
zero. Moreover, my spoken English was very poor, making it difficult to find a
PhD position. Fortunately, I met Simon, whose encouragement played a pivotal role
in my journey, fostering a sense of self-belief despite my initial doubts. Simon’s
mentorship style was a departure from the traditional, control-oriented approaches
I had encountered in my previous experience, which often stifled creativity. He
offered a balance of reliable support and appropriate autonomy in guiding my research,
aligning with my personal initiative. This approach not only fostered my rapid
growth but also equipped me with several key skills, to name a few:

• Independence: Simon started to teach me to take responsibility for my research
outcomes after my first several projects. That made me realize that advisors,
despite their knowledge, are not infallible in every areas, and that I must exercise
my own judgment. This independence is crucial for long-term success in research.
A PhD may last only 4-5 years, but with this skill, I can forge a path far into the
future.

• Open-mindedness and Respect: Simon’s open-mindedness, especially in acknowledging
the validity of my choices even when they diverged from his advice, was enlightening.
His willingness to support uncharted research topics and learn alongside me was
empowering. This experience hastened my development into an independent
researcher, fostering courage in my convictions and a readiness to learn from both
successes and failures.

• Networking and Equal Communication: Since joining Shuailab in Sep 2019, Simon’s
guidance on my first project included connecting me with Dr. Pin Sym. This
collaboration was intended to equip me with his quantitative skills and Pin Sym’s
qualitative expertise. This experience also equipped me with the ability to discern
and synthesize diverse expert opinions, a skill I will delve into later. Additionally,
Simon’s respectful communication fostered a friendly atmosphere, encouraging
open expression of ideas.

vi

• Non-Competitive Environment: Simon cultivated a non-competitive lab environment.
As a Chinese student accustomed to intense competition and judgment, this was
a refreshing change. The lab’s relaxed atmosphere, devoid of hierarchy, allowed
me to freely express my ideas and choose my research topics confidently.

In summary, Simon’s mentorship was instrumental in shaping my PhD experience,
teaching me invaluable lessons in independence, open-mindedness, effective communication,
and the importance of a healthy, collaborative research environment.

2. My academic mentors: Dr. Kenny Choo, Prof. Shengdong Zhao, and Dr. Toby
Jia-jun Li (in the order of when I worked with them). Each played a pivotal role in
my development as a researcher, although they were not my official advisors.

• Dr. Kenny Choo was the first to guide me. He played a crucial role in refining
my initial research ideas, especially in the CoAIcoder project. His passion for
transforming my primary and rough ideas into actionable studies and system
designs was invaluable. In the early stages of my PhD, he provided numerous
materials and books, and even translated complex research concepts for me when
communication using English was challenging. This support was instrumental
in my first significant steps towards research. Beyond academic guidance, Kenny
also offered invaluable advice during my job search and application process.

• Prof. Shengdong Zhao was the next mentor I encountered. Although he is a "big
name" in HCI both in Singapore and globally, he invested substantial commitment
to student mentorship. He excelled in presenting research, capable of articulating
many details with clarity. His research style was thorough and detail-oriented,
and the research papers under his guidance were notable for their meticulous,
solid, and systematic approach. Working with him and his PhD student Nuwan,
I also learned to write research papers scientifically and concisely. Additionally,
being part of the vibrant HCI community he fostered in Singapore felt like coming
back to a warm family.

• Finally, my interactions with Dr. Toby Jia-jun Li enriched my academic journey
further. He taught me how to craft papers that are both interesting and convincing
for reviewers. His extensive network in HCI and NLP opened new doors for
me, including the opportunity to visit the United States and immerse myself in
its academic culture. His encouragement and recognition of my achievements
bolstered my confidence. His vision and taste in research have been particularly
inspiring, motivating me to pursue cutting-edge research globally.

Each of these mentors has uniquely contributed to my growth and success in every
stage of my PhD. Their combined influence has been a cornerstone of my development

vii

as a researcher. Lastly, I am grateful to Prof. Thomas W. Malone for offering me
an excellent postdoctoral position. His research ambitions align closely with mine,
instilling confidence in me to pursue my future research career with enthusiasm and
determination.

3. My academic collaborators and friends: I would also like to express my sincere
gratitude to my many collaborators and academic friends: Dr. Pin Sym Foong,
Dr. Nuwan Janaka, Zheng Zhang, Dr. Marie Therese Siew, Dr. Katherine Fennedy,
Yeo Shunyi, Gionnieve Lim, Chen Zhou, Ruyuan Wan, Yunpeng Bai, Runze Cai,
Yang Chen, Lin Zhu, Yifan Yang, Shan Zhang, Danny Hyeongcheol Kim, Yuwen Lu,
Zheng Ning, Simret Araya Gebreegziabher, Zhuoqun Jiang, Sharmayne, Haw Yuh,
Atima Tharatipyakul, Pavithren Pakianathan, Nurhadi Ahmad and many other lab
members from SHUAILab, NUS-HCI Lab and SaNDwich Lab! Their collaboration
and support have been invaluable to my academic and personal growth. Some of
these professional relationships have become deep personal friendships, enriching
both my research journey and my life. I wish them great success in their respective
study and career journeys!

4. My life partner: I am deeply thankful to my life partner, Junming Cao, for his
unwavering support throughout the demanding period of my PhD studies. There
were moments in the early stages of my academic journey when I struggled with
unpublished papers, leading to immense frustration and self-doubt. I even was
thinking of quitting my PhD to pursue an industry job. During these challenging
times, Junming was my pillar of strength, constantly reminding me that publication
was not the sole measure of success. He emphasized that my innate characteristics,
such as curiosity and perseverance in academics, made me exceptionally suited for
a research career. Furthermore, Junming reassured me that the research topics I had
chosen and the work I had accomplished were valuable, even if they had yet to gain
recognition in the academic community. His support went beyond emotional; he
frequently provided objective feedback on my research ideas and many immature
thoughts, and actively assisted me in acquiring a wide range of programming and
technological skills, significantly accelerating my growth and development. His
belief in my abilities and potential has been a crucial factor in my journey and
success.

5. My family: I owe immense gratitude to my family for their unwavering support.
My parents, Jianpeng Gao and Honglan Zhao, along with my younger brother, Jie
Zhao, have been sources of my strength. My mother, Honglan, played an essential
role in shaping my ambition and enthusiasm for learning from a young age. She
consistently provided thoughtful consideration for my long-term development. My

viii

father, Jianpeng, has been a constant source of unconditional love and support,
fostering a nurturing environment for me to grow and pursue my dreams. My
younger brother, Jie, has always been a source of pride, cheering me on at every
step of my journey. I am also profoundly grateful to my grandparents, who raised
me during my early years and provided a foundation of unconditional love. Their
care contributed to a joyful childhood, shaping my optimistic outlook and giving
me the courage and resilience to face life’s challenges. Additionally, I extend my
deepest thanks to my uncle, Yong Yang. His guidance and encouragement were
instrumental in my decision to pursue advanced academic degrees, including my
master’s and PhD. His influence has been a guiding light in my academic path.

Thank you to everyone who has been a special part of my life.

ix

Contents

PhD Thesis Examination Committee i

Abstract ii

Publications iii

Acknowledgements v

1 Introduction 1
1.1 Research Motivations . 1
1.2 Research Goals . 3

1.2.1 Term Definitions and Related Terms 3
1.2.2 Research Questions and Scopes . 5

Examining the Effectiveness of AI-assisted Human-to-Human Collaboration
in Qualitative Analysis 5

Investigating the Impact of Human-AI Interaction on User Trust
and Reliance in AI-Assisted Qualitative Coding 7

Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models . . . 7

1.3 Research Contributions . 8
1.3.1 Systems and Tools Contributions 8

CoAIcoder: A Tool for Human-to-Human Collaboration via AI
within Qualitative Coding Team 8

CollabCoder: A Tool for Collaborative Qualitative Analysis with
Large Language Models 8

1.3.2 Empirical Contributions . 9
Exploration in CQA Practices, Challenges, and Expectations . . . 9
Evaluation of CoAIcoder with Three Factors: With/Without AI

Model, Synchrony, and Shared/Not Shared Model . . . 9
Evaluation of User Trust and Reliance on the AIcoder System . . 10
Evaluation of CollabCoder . 10

x

2 Choice of Research Topic 12
2.1 My Research Journey during the COVID-19 Outbreak 12
2.2 Two Questions to Qualitative Analysis . 13
2.3 A New Start: Using AI for Qualitative Analysis 14
2.4 A Paper on This Topic Emerges at CHI . 15
2.5 At Last: Pathway to Integrating AI in Qualitative Analysis 15

3 Background and Related Work 17
3.1 Qualitative Analysis and Its Methods . 17

3.1.1 What is Qualitative Analysis? . 17
3.1.2 Methodology: Grounded Theory, thematic analysis, and others . 17
3.1.3 Collaborative Qualitative Analysis 18

3.2 Human, Traditional AI, and Qualitative Analysis 20
3.2.1 Definition of Human-AI Collaboration, Human-AI Interaction,

and Human-Centric AI . 20
3.2.2 (Semi)-Automating Qualitative Analysis 21
3.2.3 (Semi)-Automating Collaborative Qualitative Analysis 22

3.3 Generative AI and Qualitative Analysis 24
3.3.1 Large Language Models and Generative AI 24
3.3.2 Generative AI and Human-LLM Collaboration 25
3.3.3 Using Generative AI to Support Qualitative Analysis 25

4 Examining the Effectiveness of AI-assisted Human-to-Human Collaboration
in Qualitative Analysis 27
4.1 Goals and Context . 27
4.2 Formative Interview . 27

4.2.1 Methodology . 28
4.2.2 Findings . 28

Basic CQA Process . 28
Difficulties in Performing Collaborative Qualitative Analysis . . 30
Suggestions for AI-assisted CQA tools 33

4.2.3 Study Limitation . 34
4.2.4 Discussion . 34

4.3 CoAIcoder: System Design . 35
4.3.1 Design Considerations . 35
4.3.2 Interface . 36
4.3.3 AI Model . 37
4.3.4 Training and Updating Pipeline 38

Saving and Retrieving Data . 38

xi

Training and Reloading NLU Models in (Near) Real Time 39
4.4 User Evaluation Design . 39

4.4.1 Task . 39
4.4.2 Independent Variables (IVs) and Conditions 40
4.4.3 Participants . 42
4.4.4 Procedure . 42
4.4.5 Dependent Variables (DVs) . 44

Coding Time . 44
Inter-rater reliability (IRR) . 44
Code Diversity . 44
Code Coverage . 44

4.4.6 Data Analysis . 45
Step 1: Data Integrity and Quality Checking 45
Step 2: Generating Initial Codebooks 45
Step 3: Measuring DVs . 46
Step 4: Statistical Analysis . 47

4.5 Quantitative Results . 47
4.5.1 Coding Time . 47

Total Time . 47
Phase 1 . 47
Phase 2 . 49
Phase 3 . 49

4.5.2 Inter-rater Reliability . 49
Phase 1 . 49
Phase 3 . 50

4.5.3 Code and Subcode Diversity . 50
Phase 1 . 50
Phase 2 . 51

4.5.4 Code and Subcode Coverage . 51
Phase 1 . 51
Phase 2 . 51

4.6 Triangulation with Qualitative Results . 51
4.6.1 Lower Initial Coding Time . 52
4.6.2 Higher Initial IRR . 53
4.6.3 Lower Diversity . 53
4.6.4 Effect of Synchrony . 54
4.6.5 Positive Feedback from Shared Model Conditions 54
4.6.6 Similarity of Codebooks across Conditions 55

4.7 Discussion . 55

xii

4.7.1 Trade-off: Coding Efficiency vs. Coding Quality 55
AI & Shared Model Fosters Strong Discussions 56
Potential Pitfalls . 56

4.7.2 Is Shared Model best for CQA? Considering Different Application
Scenarios . 57
Supporting Different Contexts with Different Independence Level. 57
Support Different User Groups with AI & Shared Model 58

4.8 Design Implications . 59
4.8.1 Impact of Coding Granularity on Human-AI collaboration 59

Establishing Optimal Coding Granularity for both AI and Human
Coders . 59

Impact of Coding Granularity on IRR Calculation 60
Impact of Coding Granularity on Stability of Suggestions 60

4.8.2 Trust and User Expectations . 61
Calibrating Users’ Expectation Before Coding 61
Can Imperfect Suggestions Help? 61

4.9 Limitations and Future Work . 62
4.10 Conclusion . 64

5 Investigating the Impact of Human-AI Interaction on User Trust and Reliance
in AI-Assisted Qualitative Coding 65
5.1 Motivation . 65
5.2 Background and Related Work . 66

5.2.1 Trust and Reliance with AIQCs . 66
5.2.2 Human-AI Interaction within AIQCs 67

5.3 AIcoder: AI-assisted Qualitative Coding Tool 69
5.4 Study Design . 69

5.4.1 Study Task . 70
Dataset . 70
Pilot Test . 70

5.4.2 Independent Variables and Conditions 71
5.4.3 Participants . 72
5.4.4 Procedure . 73
5.4.5 Dependent Variables . 73

Model Performance . 73
Decision Time . 74
Coding Behavior . 74
Selecting Rate . 75
Perceived Trustworthiness and Perceived Helpfulness 75

xiii

Subjective Preferences . 75
5.4.6 Data Analysis . 76

Quantitative analysis . 76
Qualitative analysis . 76

5.4.7 RQ1: Impact on Model Performance 76
Summary . 76

5.4.8 RQ2: Impact on Decision Time and Coding Behavior 77
Coding Behavior . 77
Decision Time . 77
Summary . 79

5.4.9 RQ3: Impact on User Reliance . 79
Selecting Rate . 80
Over-reliance concerns . 81
Comparing the Coding Results With and Without AI Assistance . 81

5.4.10 RQ4: Impact on Perceived Trustworthiness and Helpfulness . . . 82
Perceived Trustworthiness . 82
Perceived Helpfulness . 82

5.4.11 RQ5: Impact on Subjective Preferences 84
User Preferred Selective . 84
Imperfect AI Suggestions Still Contribute Value 84
Code Suggestions Promote Consistency 85
Too Long Text Selections (Paragraph) Presents Challenges 85

5.5 Discussion . 85
5.5.1 Task Difficulty Across Conditions for Open Coding 86

Qualitative Open Coding: A Series of Distinct Tasks Rather than
a Singular Whole . 86

Challenging Paragraph Conditions 86
The Complexity of Long Codes Compared to Short Codes and

Mixed Codes . 86
5.5.2 Reliance and Perceptions Discrepancies Due to Varied Task Difficulties 87

Higher Reliance for Simpler Tasks 87
Contrasting Reliance and Perceived Helpfulness in Complex Tasks 87

5.5.3 Over- and under-reliance on AIQCs 87
Reasons for Under-reliance . 87
Over-reliance Risk . 88

5.5.4 Optimal Code Granularity Varies Between Users and AI 88
5.5.5 Coding Strategies in Real Life . 89

Selective is Best for Coding . 89
Sentence for Collaborative Coding 89

xiv

Paragraph for Summarizing Long Texts 89
5.6 Implications for Design . 90

5.6.1 Fostering Trustworthiness during Under-reliance on AIQCs . . . 90
Offering Extensive and Modifiable Suggestions 90
Exploiting Larger Training Datasets 90
Facilitating Open Coding Through Multifaceted Models 90

5.6.2 Mitigating Over-reliance to Prevent Shallow Codes 91
Implementing a Delay in Suggestions Display upon Selection. . . 91
Providing Explanations for AI Suggestions 91

5.7 Limitations and Future Work . 91
5.8 Conclusion . 92

6 Building A Lower-barrier, Rigorous Workflow for Collaborative Qualitative
Analysis with Large Language Models 94
6.1 Motivation . 94
6.2 Design Goals . 97

6.2.1 Method . 97
6.2.2 Results for Design Goals . 98

6.3 CollabCoder System . 102
6.3.1 CollabCoder Workflow & Usage Scenario 102

Phase 1: Independent Open Coding 103
Phase 2: Code Merging and Discussion 104
Phase 3: Code Group Generation 104

6.3.2 Key Features . 105
Three-phase Interfaces . 105
Individual Workspace vs. Shared Workspace 106
Web-based Platform . 108
Consistent Data Units for All Users 108
LLMs-generated Coding Suggestions Once the User Requests . . 108
A Shared Workspace for Deeper Discussion 108
LLMs as a Group Recommender System 109
Formation of LLMs-based Code Groups 109

6.3.3 Prompts Design . 110
Phase 1: Code Suggestions Recommendation 110
Phase 2: Code Decisions Recommendation 110
Phase3: Code Groups Recommendation 111

6.3.4 System Implementation . 112
Web Application . 112
Data Pre-processing . 112

xv

Semantic Similarity and IRR . 112
6.4 User Evaluation . 113

6.4.1 Participants and Ethics . 113
6.4.2 Datasets . 113
6.4.3 Conditions . 114
6.4.4 Procedure . 114

Introduction to the Task . 114
Specific Process . 114
Data Recording . 115

6.5 Results . 115
6.5.1 RQ1: Can CollabCoder support qualitative coders to conduct CQA

effectively? . 115
Key Findings (KF) on features that support CQA 115
Key Findings (KF) on collaboration behaviors with CollabCoder

supports . 118
6.5.2 RQ2. How does CollabCoder compare to currently available tools

like Atlas.ti Web? . 120
Post-study questionnaire . 120
Log data analysis . 121

6.5.3 RQ3. How can the design of CollabCoder be improved? 121
6.6 Discussion and Design Implications . 122

6.6.1 Facilitating Rigorous, Lower-barrier CQA Process through Workflow
Design Aligned with Theories . 122

6.6.2 LLMs as “Suggestion Provider” in Open Coding: Helper, not
Replacement. 123
Utilizing LLMs to Reduce Cognitive Burden 123
Improving LLMs’ Suggestions Quality 123
LLMs should Remain a Helper . 124

6.6.3 LLMs as “Mediator” and “Facilitator” in Coding Discussion . . . 125
LLMs as a “Mediator” in Group Decision-Making. 125
LLMs as “Facilitator” in Streamlining Primary Code Grouping . 126

6.7 Limitations and Future Work . 126
6.8 Conclusion . 127

7 Discussion and Future Work 129
7.1 Towards Automating Qualitative Analysis with Large Language Models 129
7.2 Constructing Frameworks of Human-LLM Collaboration 130
7.3 Augmenting LLMs for Other Areas like Code Auditing 130

xvi

8 Conclusion 132

A Appendix for CoAIcoder 134
A.1 Study Protocol . 134

A.1.1 Welcome to AIQA Study! . 134
A.1.2 Task Introduction . 134
A.1.3 Introduction to Three Phases . 135
A.1.4 Post-Study Interview Questions 135

A.2 Intuitive comparison of the results across four conditions 135

B Appendix for CollabCoder 137
B.1 Different CQA Software . 137
B.2 The primary version of CollabCoder . 137
B.3 Prompts used in CollabCoder . 137
B.4 Demographics of Participants . 137
B.5 Observation notes for participants . 137

Bibliography 146

xvii

List of Figures

1.1 A depiction of Human-AI collaboration, in which a girl and a robot are
studying together happily. This figure is generated using GPT-4 and
DALL·E. 2

1.2 Overview of Various Data Types. The figure is from the QualityDigest
website. 3

1.3 Overview of the Thesis Content. 6

3.1 A Circular Coding Process (See More in DeCuir-Gunby, Marshall, and
McCulloch, 2011; Richards and Hemphill, 2018; Saldaña, 2021). 18

3.2 Preparation, organisation and qualitative data analysis process. Figure
from Azungah, 2018. 19

4.1 The CoAIcoder interface. Creating a code: (1) Users select the text of
significance and (2) click the comment button to add codes. (3) Users
can add codes directly or select one from the dropdown list. (4) The
created code is shown beside the selected text. (5) Click on the code to
edit it directly or reselect codes. (6) Click on the button to check the code
editing history. 37

4.2 The pipeline for training and updating the CoAIcoder model, designed
to facilitate code suggestion requests. (a) Save and process user’s coding
data: This step involves saving, retrieving, and processing each coder’s
coding data. The retrieved data is then used to generate an nlu.yml file,
which contains coded text (i.e., examples) and codes (i.e., intent). (b)
Train NLU Model: This process trains a new model using the updated
nlu.yml, which takes about six seconds or longer, depending on the coding
data size. (c) Replace models: This process substitutes the old model
with the newly trained one, approximately requiring four seconds per
model. (d) Request code suggestions: The user requests code suggestions
from the server. Initially, CoAIcoder requests code suggestions from
server1. If this fails, the request is then rerouted to server2, thereby
sustaining the impression of continuously updated code suggestions for
the user. 38

4.3 One sample interview transcript in coding task. 40

xviii

4.4 Four Approaches to Collaboration in Qualitative Analysis. Condition A:
Without AI, Asynchronous, not Shared Model (Traditional Coding): Both
coders independently apply codes. Condition B: With AI, Asynchronous,
not Shared Model: Each coder applies codes using their respective NLU
models. Condition C: With AI, Asynchronous, Shared Model: The coders
apply codes asynchronously with a shared NLP model. Coder1 begins
the process, during which the NLP model trains and offers real-time AI
suggestions. Once Coder1 completes the task, Coder2 commences with
coding. Condition D: With AI, Synchronous, Shared Model: The coders
apply codes synchronously with a shared NLP model. 42

4.5 Study procedure. Both coders underwent training in CQA, prior to the
formal coding process. Phase 1 (Independent and Open Coding): In
this phase, both coders individually performed coding for two interview
materials, following the assigned study setup (≤20 minutes). Phase
2 (Discussion and Codebook Formation): During this phase, the two
coders engaged in discussions to collaboratively create a structured codebook
using Google Sheets (≤40 minutes). Phase 3 (Application of the Codebook):
In this phase, the coders independently applied the codes from the agreed
codebook during their individual coding sessions (≤10 minutes). At the
end of each phase, participants were required to complete a survey and
interview (≈5 minutes). 43

4.6 Average Total Coding Time for Each Condition (A, B, C, and D). Error
bars show .95 confidence intervals. A Kruskal-Wallis test showed no
main effect. 48

4.7 Average Coding Time for Three Phases. Error bars show .95 confidence
intervals. We report the results of the individual Kruskal-Wallis tests,
and, if necessary, pairwise comparisons, where ∗ : p < .05, ∗∗ : p < .01. . 48

4.8 Average Inter-coder Reliability after Phase 1 and after Phase 3. Error bars
show .95 confidence intervals. We report the results of the individual
Kruskal-Wallis tests, and, if necessary, pairwise comparisons, where ∗ :

p < .05, ∗∗ : p < .01. 49
4.9 Average Code and Subcode Diversities in Phase 1 and Phase 2. Error

bars show .95 confidence intervals. A Kruskal-Wallis test is conducted
for the main effect in each phase. Pairwise comparison is performed
using Mann–Whitney U-Test with a two-sided alternative, where ∗ : p <

.05, ∗∗ : p < .01. 50
4.10 Average Coverage of Code and Subcode in Phase 1 and Phase 2. Error

bars show .95 confidence intervals. We report the results of the individual
Kruskal-Wallis tests. 52

xix

5.1 AIcoder Interface. The above figure shows a user was doing coding using
Mixed Codes. The user can add codes by 1) selecting the text of significance
or interest, including phrases, sentences or paragraphs, etc.; 2) clicking
the comment button to create a code; 3) typing new code or selecting
code suggestions suggested by AI. Each code also shows the confidence
level, ranging between 0 and 1; 4) code is shown beside the selected text;
5) edit codes. 70

5.2 Process of recommendation generation. User side: 1) the user selects
the text and clicks on "comment" button; the system 2) automatically
requests suggestions from the model server, 3) conducts a classification
process, 4) returns a list containing up to 10 code suggestions for the user
to either select from or refer to, and 5) the user decides to either create
their own codes or select one from the list. System Side: 6) the codes and
labeled text are subsequently stored for future use, 7) the selected text
and added codes are reused as training data to fine-tune a new model,
and 8) the updated model is subsequently deployed onto the server. . . 71

5.3 A sample paragraph for the open coding tasks, extracted and preprocessed
from the Yelp reviews dataset. 71

5.4 Nine Coding Methods. 72
5.5 Average Decision Time (Seconds). The time needed to make a decision

for each selection. Final results for Selecting Rate and Decision Time. Error
bars represent .95 confidence intervals. 78

5.6 Selecting Rate (0-1). Users’ receptiveness to code suggestions produced
by the system. Final results for Selecting Rate and Decision Time. Error
bars represent .95 confidence intervals. 81

5.7 User’s Perceived Helpfulness of code suggestions. Error bars show .95
confidence intervals. Y-axis represents 1-5 Likert score, where 1 represents
a complete lack of helpfulness and 5 is the highest level of helpfulness. . 85

6.1 Collaborative Qualitative Analysis (CQA) (J. Corbin and Strauss, 2008;
J. M. Corbin and Strauss, 1990; Richards and Hemphill, 2018) is an iterative
process involving multiple rounds of iteration among coders to reach a
final consensus. Our goal with CollabCoder is to assist users across key
stages of the CQA process. 95

6.2 Overview of the six steps involved in collaborative qualitative analysis
proposed by Richards and Hemphill, 2018. 96

xx

6.3 CollabCoder Workflow. The lead coder Alice first splits qualitative data
into small units of analysis, e.g., sentence, paragraph, prior to the formal
coding. Alice and Bob then: Phase 1: independently perform open coding
with GPT assistance; Phase 2: merge, discuss, and make decisions on
codes, assisted by GPT; Phase 3: utilize GPT to generate code groups for
decided codes and perform editing. They can write reports based on the
codebook and the identified themes after the formal coding process. . . 102

6.4 Precoding: establish consistent data units and enlist coding team during
project creation. The primary coder, Alice, can: 1) name the project, 2)
incorporate data, ensuring it aligns with mutually agreed data units, 2a)
illustrate how CollabCoder manages the imported data units, 3) define
the coding granularity (e.g., sentence or paragraph), 4) invite a secondary
coder, Bob, to the project, and 5) initiate the project. 103

6.5 Editing Interface for Phase 1: 1) inputting customized code for the text
in "Raw Data", either 1a) choosing from the GPT’s recommendations, 1b)
choosing from the top three relevant codes; 2) adding keywords support
by 2a) selecting from raw data and "Add As Support"; 3) assigning a
certainty level ranging from 1 to 5, where 1="very uncertain" and 5="very
certain"; and 4) reviewing and modifying the individual codebook. . . . 105

6.6 Comparison Interface for Phase 2. Users can discuss and reach a consensus
by following these steps: 1) reviewing another coder’s progress and 1a)
clicking on the checkbox only if both individuals complete their coding,
2) two coders’ codes are listed in the same interface, 3) calculating the
similarity between code pairs and 3a) IRR between coders, 4) sorting the
similarity scores from highest to lowest and identifying (dis)agreements,
and 4a) making a decision through discussion based on the initial codes,
raw data, and code supports or utilizing the GPT’s three potential code
decision suggestions. Additionally, users have the option to "Replace"
the original codes proposed by two coders and revert back to the original
codes if required. They can also replace or revert all code decisions with
a single click on the top bar. 106

6.7 Code Group Interface. It enables users to manage their code decisions in
a few steps: 1) the code decisions are automatically compiled into a list
of unique codes that users can edit by double-clicking and accessing the
original data by hovering over the code. 2) users can group their code
decisions by using either "Add New Group" or "Create Code Groups
By AI" options. They can then 2a) name or delete a code group or use
AI-generated themes, and 2b) drag the code decisions into code groups.
3) Finally, users can save and update the code groups. 107

xxi

6.8 Post-study Questionnaires Responses from Our Participants on Different
Dimensions on A 5-point Likert Scale, where 1 denotes "Strongly Disagree",
5 denotes "Strongly Agree". The numerical values displayed on the stacked
bar chart represent the count of participants who assigned each respective
score. 120

B.1 Primary Prototype for Phase 1. 138
B.2 Primary Prototype for Phase 2. 138
B.3 Primary Prototype for Phase 3. The gray-colored codes serve as an example

to illustrate the differences between "Code Group", "Unique Code", and
"User Code". The interfaces shown above, being preliminary mockups,
were utilized to gather feedback from our primary interviewees in Step3,
Section 6.2.1, for the refinement of the final version of interfaces including
Figure 6.5, 6.6, and 6.7. 139

B.4 Results of thematic analysis in Step3 (Section 6.2.1) from expert interviews
to derive design goals, with each node representing a coded element. . . 140

xxii

List of Tables

4.1 Demographics of Interview Participants. Every participant was working
in tje field of HCI and was a master’s student or above. 28

4.2 The combinations of the three factors, which are not entirely independent
of each other. For instance, the absence of AI renders the Shared Model
factor irrelevant, making conditions C7 and C8 nonsensical. Synchronous
coding is only applicable in the presence of a Shared Model, as the order
in which coding occurs is inconsequential without a shared model. Thus,
certain conditions become identical due to the absence of a shared model,
namely C1 and C2, as well as C3 and C4. 41

4.3 Part of a sample of the initial codebook (Phase 1). Each row containing
second-level codes is counted as a single first-level code. This codebook
demonstrates a "Code Diversity" of 5 first-level codes alongside 10 second-level
codes. 46

4.4 Part of a sample codebook, which is formulated from the 27-minute
discussion in Phase 2 between participants P27 and P28 under Condition
D: With AI, Synchronous, Shared Model. The "First-level Code" column
represents the first-level codes generated during this discussion. The
"Second-level Code" column, on the other hand, contains codes proposed
by them in Phase 1. The "Example" column showcases selected segments
of the original text. 46

5.1 Nine conditions corresponding to Text Granularity (i.e., unit of analysis
or length of text selection) and Code Granularity (i.e., length of code in
words). 72

5.2 The model’s performance. All values fall within the range of 0 to 1. . . . 77
5.3 Summary of Coding Behavior. Among nine conditions, Mixed Codes ×

Selective is the baseline, having little to no code constraints and thus
closely representing open coding. 78

xxiii

5.4 Comparison of typical coding results for each condition (LP = Long Codes
× Paragraph, SS = Short Codes × Sentence, and ME = Mixed Codes × Selective),
both with and without the application of AI. Each cell presents codes
derived from a typical user’s results under the specified condition. While
the "with AI" condition may yield codes with a higher selection rate, they
may lack nuanced detail. In contrast, the "without AI" condition tends
to generate more detailed codes. 83

5.5 Summary of Values of Perceived Trustworthiness and Perceived Helpfulness.
All DVs are on a Likert scale from 1 to 5. 83

6.1 Summary of Sources Informing Our Design Goals 97
6.2 Participant Demographics in Exploration Interview 98
6.3 Overview of the final coding results. "Collab." denotes CollabCoder,

"Atlas." denotes Atlas.ti Web, "Total Codes" denotes the total number
of codes generated while "Discussed Codes" denotes the total number
of codes that were discussed by the coders during the discussion phase.
"Bus." denotes the "Business" dataset while "His." denotes the "History"
dataset. "Suggestions Acceptance" column denotes the proportion of
usage of GPT-generated codes (GPT), the selection from the relevant
codes in code history suggested by GPT (Rele.), and users’ self-proposed
codes (Self.) to the total number of open codes in Phase 1. "GPT-based
Code Decisions" column reflects the proportion of code decisions in Phase
2 that originated from suggestions made by the GPT mediator. 128

A.1 The Ranking of Codes in Formed Codebook of Four Conditions. Only
codes in the first level were counted. The codes in every cell are different
expressions of one core idea labelled in bold. 136

B.1 Different CQA Software. Note: This list is based on public online resources
and not exhaustive. 137

B.2 The prompts utilized in CollabCoder in Phase 1 when communicating
with the ChatGPT API to produce code suggestions for text. 141

B.3 The prompts utilized in CollabCoder in Phase 2 when communicating
with the ChatGPT API to produce code suggestions for text. 142

B.4 The prompts utilized in CollabCoder in Phase 3 when communicating
with the ChatGPT API to produce code group suggestions for final code
decisions. 142

xxiv

B.5 Demographics of Participants in User Evaluation. Note: QA expertise is
not solely determined by the number of QA experiences, but also by the
level of QA knowledge. This is why some participants with 1-3 times
of prior experience may still regard themselves as having intermediate
expertise. 143

B.6 Observation notes for Pair1-Pair4. The language has been revised for
readability. 144

B.7 Observation notes for Pair5-Pair8. The language has been revised for
readability. 145

xxv

List of Abbreviations

QA Qualitative Analysis
CQA Collaborative Qualitative Analysis
AIQCs AI-assisted Qualitative Coding systems

xxvi

With love and gratitude, I dedicate this thesis to
my grandparents, Chengguo Gao & Xiaomei Shi,

my parents Jianpeng Gao & Honglan Zhao,
my uncle Yong Yang,

and my life partner Junming Cao

whose commitment to my happy childhood, sources of courage
and confidence, and resilience, have made it possible for me to
pursue a PhD degree, and a life with curiosity and interest, and

even, to change the world, in my own way.

1

Chapter 1

Introduction

1.1 Research Motivations

• Human: "I’m trying to write a poem, but I’m stuck on the last verse. It’s just not coming
together."

• AI: "How about I suggest some rhymes and structures, and you can infuse them with your
emotions and experiences?"

• Human: "That sounds great! Your technical help with my artistic vision - we’re quite the
team!"

• AI: "Absolutely! Together, we can create a masterpiece that resonates both technically and
emotionally."

The aforementioned conversation between a human and AI is an example of how
such collaboration can yield intriguing outcomes, like the creation of poems, essays,
and other complex works.

Human-AI collaboration has garnered significant attention in recent years. In this
area, AI’s role is not just to fully automate tasks traditionally performed by humans,
but also to combine the ability of humans and AI to achieve tasks that cannot be
finished by only AI or only humans. From a technological standpoint, consider the
example of self-driving cars. While full automation could be risky in certain scenarios,
a collaborative approach, where humans and autonomous vehicles work together, offers
numerous benefits. In such a setup, the human operator can monitor the system and
intervene in risky or complex situations, such as when the driving system loses control
or faces unpredicted challenges. This collaboration not only enhances efficiency and
safety but also potentially reduces human energy costs. From a societal perspective,
human-AI collaboration can be instrumental in job creation, counteracting the notion
that AI will replace human jobs. Instead of viewing AI as a replacement, it can be
seen as a complement to human skills, where the combination of human intuition and
machine efficiency can lead to superior outcomes that neither can achieve alone. Figure
1.1 illustrates a scenario in which humans and AI study together.

Chapter 1. Introduction 2

FIGURE 1.1: A depiction of Human-AI collaboration, in which a girl and
a robot are studying together happily. This figure is generated using

GPT-4 and DALL·E.

Meanwhile, data surrounds us globally, every day, playing a crucial role in various
domains. It has become akin to ’fuel’ that drives businesses and research towards the
right direction1. Data science encompasses diverse types of data, including quantitative
and qualitative2 (see more in Figure 1.2). A primary objective of data science is to
extract pivotal ideas and gain meaningful insights from this data. In particular, qualitative
data, or unstructured data, such as interview transcripts, observation notes, and meeting
notes, are particularly common in fields like education, psychology, and social sciences (Nassaji,
2015).

In today’s era, where data is expanding at an unprecedented rate, understanding
how to leverage AI is critical. Equally important is utilizing human expertise in data
analysis to collaborate effectively with AI, thereby scaling the time-consuming and
effort-intensive processes. Consequently, a new and emerging research area, AI-assisted
qualitative analysis, has been developed. Researchers in this field have primarily pursued
two main directions. The first involves designing tools and systems to enhance the
efficiency of qualitative analysis. These tools aim to facilitate large-scale data interpretation
and support the discussion process, with the primary goal of assisting users rather than
automating the coding process entirely (Rietz and Maedche, 2021; Gebreegziabher et
al., 2023; Hong et al., 2022). The second direction concentrates on automating the
coding process by leveraging the prompting engineering and generative capabilities

1https://www.analyticsvidhya.com/blog/2021/06/complete-guide-to-data-types-in-statistics-for-data-science/
#h-introduction

2https://www.qualitydigest.com/inside/six-sigma-article/
types-data-and-scales-measurement-071520.html

https://www.analyticsvidhya.com/blog/2021/06/complete-guide-to-data-types-in-statistics-for-data-science/#h-introduction
https://www.analyticsvidhya.com/blog/2021/06/complete-guide-to-data-types-in-statistics-for-data-science/#h-introduction
https://www.qualitydigest.com/inside/six-sigma-article/types-data-and-scales-measurement-071520.html
https://www.qualitydigest.com/inside/six-sigma-article/types-data-and-scales-measurement-071520.html

Chapter 1. Introduction 3

FIGURE 1.2: Overview of Various Data Types. The figure is from the
QualityDigest website.

of Large Language Models (LLMs) (Byun, Vasicek, and Seppi, 2023; Xiao et al., 2023;
Kok, 2023). Both directions are showing rapid growth and hold great potential. In
this thesis, my primary focus was on the first direction: designing and developing
human-AI collaborative tools for qualitative analysis.

1.2 Research Goals

In this thesis, I delve into the domain of human-AI collaboration, with a specific focus
on AI-assisted qualitative analysis, grounded in foundational theories such as Grounded
Theory (J. M. Corbin and Strauss, 1990) and Thematic Analysis (Maguire and Delahunt,
2017). My research objectives are twofold. Firstly, I aim to explore the potential role of
AI in facilitating human-to-human collaboration within the realm of qualitative analysis.
Secondly, I focus on examining the dynamics of human-AI trust and reliance, and how
these factors influence the design and development of collaborative AI tools.

1.2.1 Term Definitions and Related Terms

• Qualitative Analysis. Qualitative Analysis involves the examination of non-numerical,
unstructured data collected through methods such as observations, one-to-one interviews,
and focus groups3. This process is guided by various theoretical frameworks, including
Grounded Theory (J. M. Corbin and Strauss, 1990) and Thematic Analysis (Maguire
and Delahunt, 2017). While acknowledging the inherent subjectivity in qualitative
methods, these approaches emphasize the systematic and consistent interpretation

3https://www.questionpro.com/blog/qualitative-data/

https://www.questionpro.com/blog/qualitative-data/

Chapter 1. Introduction 4

of data, ensuring that conclusions are representative of multiple perspectives and
align with other data like quantitative data (Lazar, Feng, and Hochheiser, 2017a).

• Collaborative Qualitative Analysis (CQA). CQA is a process in which there is joint
focus and dialogue among two or more researchers regarding a shared body of data,
to produce an agreed interpretation (Gao, Choo, et al., 2023; Cornish, Gillespie, and
Zittoun, 2013).

• Code: A code is typically a succinct word or phrase created by the researcher to
encapsulate and interpret a segment of qualitative data. This facilitates subsequent
pattern detection, categorization, and theory building for analytical purposes (Saldaña,
2021).

• Coding. Qualitative Coding serves as a key method for analyzing qualitative data. It
involves labeling segments of data with codes that concurrently categorize, encapsulate,
and interpret each individual data point (Flick, 2013).

• Coders. Researchers engaged in the process of qualitative coding are called coders.
A coding team usually includes two to three coders.

• Codebook/Themes/Code groups: A codebook is a hierarchical collection of code
categories or thematic structure, typically featuring first and second-order themes or
code groups, definitions, transcript quotations, and criteria for including or excluding
quotations (Richards and Hemphill, 2018; Saldaña, 2021).

• Agreement/Consensus: Agreement or consensus is attained through in-depth discussions
among researchers, where divergent viewpoints are scrutinized and potentially reconciled
following separate rounds of dialogue (N. McDonald, Schoenebeck, and Forte, 2019).
The degree of agreement among multiple coders serves as an indicator of the analytical
rigor of a study (Cornish, Gillespie, and Zittoun, 2013).

• Intercoder Reliability (IRR): IRR is a numerical metric aimed at quantifying agreement
among multiple researchers involved in coding qualitative data (N. McDonald, Schoenebeck,
and Forte, 2019; O’Connor and Joffe, 2020).

• Independence: Typically, open coding and initial code development are undertaken
independently by individual team members to minimize external influence on their
initial coding choices (Hall et al., 2005; Cornish, Gillespie, and Zittoun, 2013).

• Data units/Unit-of-analysis: The unit-of-analysis (UoA) specifies the granularity at
which text annotations are made, such as at the flexible or sentence level (Rietz and
Maedche, 2021).

Chapter 1. Introduction 5

• Coding granularity. Coding Granularity, though not universally applied, is crucial
in our context. It means the variability in labels and text inherent in human coding.
Specifically, Text Granularity refers to the chosen length and depth of text designated
for coding. In contrast, Code Granularity means the chosen length and depth of
each code. This distinction highlights the nuanced approach required in qualitative
coding, addressing both the selection of text and the detailed nature of the coding
itself.

• Grounded Theory and Thematic Analysis. Two foundational theories form the
basis of our approach to qualitative analysis, offering specific steps and guidelines
for effective implementation. A detailed description of these theories and their respective
steps and practices will be provided in Section 3.1.2 of Chapter 3.

• AI-assisted qualitative coding systems (AIQCs). Researchers have sought to alleviate
this labor-intensive task by harnessing Artificial Intelligence (AI), leading to the
development of the AI-assisted Qualitative Coding system (N.-C. Chen et al., 2018;
Marathe and Toyama, 2018b).

• Semi-structured Interview. A pivotal method in qualitative data collection, the
semi-structured interview provides researchers with a framework to gather consistent
data across participants by asking a set of predetermined questions. Simultaneously,
it offers the flexibility to explore open-ended questions, allowing for deeper insights
and critical commentary (Lazar, Feng, and Hochheiser, 2017b). This approach balances
the need for structured inquiry with the opportunity to delve into the unique perspectives
and experiences of each participant.

1.2.2 Research Questions and Scopes

The thesis is structured into three main chapters (Chapter 4, Chapter 5 and Chapter 6)
with a question-finding Chapter 2, as illustrated in Figure 1.3.

Examining the Effectiveness of AI-assisted Human-to-Human Collaboration in Qualitative
Analysis

In this first work, we began with a fundamental research question: In the context
of collaborative qualitative analysis where AI has not been traditionally employed,
is it feasible to integrate AI into this process? If so, how might AI be utilized to
enhance teamwork within qualitative analysis? Furthermore, could AI act as an agent
to support human-to-human collaboration? To address these questions, we have structured
our investigation into three parts:

Chapter 1. Introduction 6

Chapter2

Why did I choose this “risky” and “unexplored” topic?
In 2021, AI-assisted qualitative analysis was a niche area.
Since 2023, with the advent of Large Language Models (LLMs),
this �eld has expanded signi�cantly. This growth is likely due to
both the lowered barriers for using AI in data analysis and
improved performance in analyzing unstructured data.

Chapter4

Examining the Effectiveness of AI-assisted
Human-to-Human Collaboration in Qualitative Analysis
Can AI be used to support the team collaboration in qualitative analysis?

Chapter5

Investigating the Impact of Human-AI Interaction on
User Trust and Reliance in AI-Assisted Qualitative Coding
How are trust and reliance impacted by human coding habits?

Chapter6

Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models
Can we take a theoretical perspective to design a CQA work�ow with LLMs?

Data Analysis

Qualitative
Data
Analysis

AI-assisted
Collaborative
Qualitative
Data Analysis

Trust and
Reliance between
human and AI

AI

AI-assisted
Qualitative
Analysis

Formative Study CoAIcoder System Evaluation of Four
Collaboration Ways

Empiricial Contribution System Contribution

CollabCoder System Evaluation of
CollabCoder

Design Goals

Empricial Study RQ1

RQ2

RQ4

RQ3

RQ5

Understanding CQA
practices, challenges
and expectations for
AI support tools

Designing and implement-
ing CoAIcoder system, fea-
turing four methods that
augment collaboration

Evaluating the tradeoffs
of the four AI-assisted
CQA methods with 64 users

Taking a theoretical per-
spective to extract and
enhance 8 design goals

Developing a one-stop,
end-to-end web-based
CQA workflow,
CollabCoder

Evaluating the system
with 16 participants, and
gaining insights from both
theoretical and practical views

Understand any inappr-
opriate trust and reliance
that may arise during the
AI-assisted coding using
a complex study design
with 36 participants.

Model performance

Decision Time and Coding Behavior

Selecting Rate

Perceived Trustworthiness and Helpfulness

Subjective Preferences

Chapter3

Related works and theoretical foundations

FIGURE 1.3: Overview of the Thesis Content.

Chapter 1. Introduction 7

• A formative study aimed at understanding current behaviors and challenges in CQA,
as well as gathering insights into expectations for AI support within team-based
settings.

• Building upon the initial findings, we developed CoAIcoder, a tool that introduces
four innovative methods designed to augment human-to-human collaboration within
CQA. We also involves detailing specific design features and guidelines that could
inform the development of future AI-assisted CQA systems.

• An evaluation of CoAIcoder, assessing whether our proposed methods are practical
and effective across various metrics like IRR, Coding time, Code Diversity, and Code
Coverage, and examining any associated trade-offs.

Investigating the Impact of Human-AI Interaction on User Trust and Reliance in
AI-Assisted Qualitative Coding

In this subsequent study, we build upon the foundations laid by our initial project,
CoAIcoder, to delve deeper into the nuances of user trust and reliance in AI systems
within the context of qualitative analysis. The primary aim is to harmonize the AI
system’s functionalities with human coding practices, thereby ensuring a more intuitive
and collaborative interaction. A critical aspect of this investigation is to identify and
understand any instances of inappropriate reliance that may arise during the AI-assisted
coding process. To advance this goal, we utilized the system developed in our previous
work and formulated the following research questions for AI-assisted qualitative coding
systems (AIQCs):

• RQ1. How does coding granularity impact the model performance of AIQCs?

• RQ2. How does coding granularity impact users’ Decision Time and Coding Behavior
when using AIQCs?

• RQ3. How does coding granularity impact users’ Selecting Rate?

• RQ4. How does coding granularity impact users’ Perceived Trustworthiness and
Helpfulness of AIQCs?

• RQ5. How does coding granularity impact users’ Subjective Preferences when using
AIQCs?

Building A Lower-barrier, Rigorous Workflow for Collaborative Qualitative Analysis
with Large Language Models

Rigor and in-depth interpretation are the two main goals of qualitative analysis. In this
study, we engage in an extensive exploration of its theoretical underpinnings, with a

Chapter 1. Introduction 8

special focus on methodologies such as Grounded Theory and Thematic Analysis. Our
key objective is to explore whether it’s feasible to develop a comprehensive, end-to-end
workflow that not only integrates these theoretical approaches to ensure the rigor of
CQA but also reduces the barriers to efficient collaboration. To this end, we have
formulated specific design goals and considerations, leading to the creation of the
CollabCoder web-based workflow, which prompts us to pose the following research
questions:

• RQ1. Can CollabCoder ’s workflow support qualitative coders to conduct CQA
effectively?

• RQ2. How does CollabCoder compare to currently available tools like Atlas.ti Web?

• RQ3. How can the design of the CollabCoder workflow be improved?

1.3 Research Contributions

1.3.1 Systems and Tools Contributions

CoAIcoder: A Tool for Human-to-Human Collaboration via AI within Qualitative
Coding Team

In Section 4.3 of Chapter 4, we present the design and development of CoAIcoder, a
system that facilitates collaborative qualitative analysis between two coders. Unlike
previous tools focused solely on human-AI teams, CoAIcoder enables two coders to
utilize their shared coding history for synchronous or asynchronous qualitative coding.
The integration of an AI agent within this system aids in establishing a shared mental
model or knowledge space, enhancing the coding process.

The development and application of this system are detailed in our publication on
TOCHI2023 (Gao, Choo, et al., 2023).

CollabCoder: A Tool for Collaborative Qualitative Analysis with Large Language
Models

In Section 6.2 of Chapter 6, we adopt a theory-driven approach to design and develop
CollabCoder, a system that enables two coders to engage in collaborative qualitative
analysis. This system integrates established qualitative analysis theories into its workflow.
The workflow comprises: Independent Open Coding: This phase involves on-demand
code suggestions from LLMs, including initial code proposals and GPT-3.5-generated
suggestions. Iterative Discussion: Focused on conflict mediation within the coding
team, this phase results in a consensus on code decisions. Codebook Development:

Chapter 1. Introduction 9

Here, code groups may be formed, utilizing LLM-generated suggestions based on the
decided codes.

This innovative approach has been showcased at the CSCW2023 demo track (Gao,
Guo, T. J.-J. Li, et al., 2023) and is also currently under revision, targeting acceptance at
CHI2024.

1.3.2 Empirical Contributions

Exploration in CQA Practices, Challenges, and Expectations

In Section 4.2 of Chapter 4, we conducted an exploratory study by interviewing 8
participants with diverse levels of experience in CQA. We then employed a thematic
analysis method to analyze the interview data, which enabled us to 1) enhance our
understanding of CQA behaviors and challenges; and 2) identify the potential of AI in
facilitating human-to-human collaboration, which subsequently inspired the development
of CoAIcoder.

These findings are published on TOCHI2023 (Gao, Choo, et al., 2023).

Evaluation of CoAIcoder with Three Factors: With/Without AI Model, Synchrony,
and Shared/Not Shared Model

In Section 4.4 of Chapter 4, we conducted an evaluation of CoAIcoder involving 64
participants. The study was structured around three factors—AI model presence, synchrony
in collaboration, and whether the model was shared or not—resulting in eight distinct
conditions (23 combinations). We selected four feasible conditions among them and
subsequently conducted a between-subjects design study with 64 participants to evaluate
the CoAIcoder system.

Key findings from this evaluation include:

• The identification of a critical trade-off between coding efficiency and coding quality,
influenced by the level of independence among coders. Specifically, lower independence
(more communication among coders) tends to yield higher efficiency and initial
intercoder reliability (IRR) but results in lower code diversity. Conversely, higher
independence (less communication among coders) leads to lower efficiency and initial
IRR but promotes greater code diversity.

• The recognition of context as a vital aspect in AI-assisted CQA. This involves understanding
whether a situation prioritizes efficiency or code diversity, and questioning if maximal
coding efficiency is always the desired outcome.

These findings are published at TOCHI2023 (Gao, Choo, et al., 2023).

Chapter 1. Introduction 10

Evaluation of User Trust and Reliance on the AIcoder System

AIcoder, a non-collaborative version of CoAIcoder, is evaluated in Chapter 5. Our
investigation initially identified a mismatch between users’ qualitative coding habits
and the system’s behavior. To delve into this discrepancy, we analyzed user interactions
with our initial AI model, particularly focusing on the role of coding granularity. Consequently,
we categorized coding granularity into two distinct levels and conducted a quantitative
study with 36 participants. This study aimed to assess the impact of users’ coding
strategies on the AI model’s performance and, subsequently, on users’ trust and reliance
on the system. Our findings reveal that:

• Qualitative coding should be viewed not as a monolithic task but as an ensemble of
subtasks with varying degrees of complexity. Some subtasks (e.g., Paragraph, Long
Codes) presented more challenges, while others (e.g., Short Codes, Mixed Codes,
Sentence, Selective) were relatively simpler.

• A notable divergence emerged between participants’ perceived helpfulness and actual
reliance on the AI system. For more complex tasks, participants reported higher
perceived helpfulness but demonstrated lower reliance. Conversely, for simpler
tasks, they showed higher reliance but perceived them as less helpful.

• The study also illuminated the risks associated with both under-reliance and over-reliance
on AIQCs. Under-reliance may prevent users from leveraging the full benefits of
AIQCs, whereas over-reliance could result in narrowly focused yet superficial outcomes.

These findings are in the process of submission and publication.

Evaluation of CollabCoder

In Section 6.5, we present our comprehensive evaluation of the CollabCoder workflow,
designed for supporting collaborative qualitative analysis. This evaluation, conducted
through a within-subject design involving 16 participants, yielded several key findings:

• User Experience: CollabCoder was highly rated for its user-friendliness, especially
beneficial for those new to the CQA process. Over 75% of participants agreed or
strongly agreed that the tool is ’easy to use’ and can be ’learned quickly’. The system
was particularly effective in supporting coding independence, clarifying (dis)agreements,
and fostering shared understanding within teams. More than 75% of participants
affirmed CollabCoder’s utility in identifying and resolving disagreements, understanding
others’ perspectives, and gauging the consensus level.

• Efficiency in Collaboration: Compared to tools like Atlas.ti Web, CollabCoder optimized
the discussion phase by enabling code pairs to be resolved in a single dialogue

Chapter 1. Introduction 11

session. This feature significantly reduces the necessity for multiple rounds of discussion,
thus enhancing collaborative efficiency.

• Role of GPT in CQA: Our findings underscore the importance of balancing LLM
capabilities with user autonomy. GPT, in its role as a ’suggestion provider’ during
the initial coding phase and as a ’mediator’ and ’facilitator’ during discussions,
contributes to efficient and equitable decision-making and code group formation.

These findings are currently under revision, targeting acceptance at CHI2024.

12

Chapter 2

Choice of Research Topic

In this Chapter, I want to document my process of choosing a research topic, as suggested
by Simon. This documentation is intended to serve as a reference for early-stage PhD
students or researchers who are undergoing the selection of an appropriate topic. This
is particularly relevant when the chosen topic diverges slightly from the advisor’s past
expertise and lies in a niche, albeit promising, area of study.

2.1 My Research Journey during the COVID-19 Outbreak

In early 2020, just before the Chinese New Year, I returned to my serene hometown in
Yuncheng, Shanxi Province, China, to celebrate with my family. However, the sudden
escalation of COVID-19 into a global pandemic disrupted everything. At that point, I
had not started my PhD research and was uncertain about my direction. My aspiration
was to conduct groundbreaking, impactful research that could change the world.

Yet, my advisor proposed a project examining the challenges of working from home
in China during the pandemic. Initially, I was hesitant; my interest in Human-Computer
Interaction leaned more towards mobile sensing, wearable technology, and innovative
user support systems, as reflected in my master’s work on Expressive Plant (Gao, Zhou,
et al., 2018). This new project seemed distant from my envisioned path, but with travel
restrictions and a national lockdown preventing my return to Singapore, it appeared to
be the most viable option for continuing my research.

Seeking guidance, I inquired in a class about how PhD students select their research
areas. A response from Prof. Shaowei Lin1 in my Statistics class resonated with me.
He suggested that research interests often evolve significantly over time. This insight
helped me realize the importance of engaging in hands-on research. While selecting
significant topics for research is essential, it is important to recognize that your interests
may evolve over time. What remains consistent is the experience gained from active
participation in the research process, which encompasses everything from experimental

1https://shaoweilin.github.io/

https://shaoweilin.github.io/

Chapter 2. Choice of Research Topic 13

design to writing a comprehensive paper. This understanding marked a turning point
in my academic journey.

2.2 Two Questions to Qualitative Analysis

When I started my first research project, it involved conducting interviews, understanding
participant needs, performing qualitative analysis, and compiling a paper. This method
differed from my technological and design-oriented background. Holding a Bachelor’s
and a Master of Engineering degrees, my background primarily lies in these areas.
Yet, the project’s focus on qualitative analysis and interviews was more akin to social
science methodologies, marking a significant shift from my usual field of work.

During this time, I was advised by Dr. Pin Sym Foong2, an HCI researcher from
the National University of Singapore with much experience in qualitative analysis.
This experience made me understand the differences in perspectives among people
from varied disciplines. My thought process, shaped by my technological background,
became more objective. In technology, solutions are more definitive and less subject to
the varied perspectives that are common in disciplines like social sciences; for example,
designing a circuit diagram requires specific configurations to function.

Therefore, qualitative analysis, a widely utilized method for analyzing interview
data, revealed two aspects that particularly surprised me:

• Subjectivity in Interpretation: Qualitative analysis is inherently subjective. I observed
that individuals with different backgrounds can have varying understandings or
interpretations of the same data. This diversity in perspective was starkly different
from the more objective nature of technological solutions.

• Time Consumption for Analysis: The process requires a significant time investment,
often spanning months, to analyze relatively small datasets. This seemed particularly
inefficient and unreasonable in an era where machines and AI are capable of automating
numerous tasks. This contrast between manual analysis and technological efficiency
was particularly striking.

I found myself increasingly drawn to the above two intriguing questions that had
emerged from my initial foray into qualitative analysis. But at that time, I wasn’t sure
who could address these concerns.

After completing the first paper on the challenges of working from home (WFH)
during COVID-19, I submitted it to CHI20213, but unfortunately, it was rejected. At
that point in my journey, I had completed courses in Statistics, Machine Learning, and

2https://pinsym.wordpress.com/
3https://chi2021.acm.org/

https://pinsym.wordpress.com/
https://chi2021.acm.org/

Chapter 2. Choice of Research Topic 14

Research Methods, but lacked practical experience in AI. Seeking deeper understanding,
I reached out to several professors, including Prof. Lu Wei4 and Prof. Kwan Hui
Lim5. Through these interactions, I learned about BERT and the advancements in
NLP technology. Motivated by this newfound knowledge, I attempted to apply NLP
techniques, such as LDA modeling, to build a topic model for a social media dataset.
This effort is part of an experiment in my WFH-related paper, which was initially
rejected but is still an ongoing project. With my advisor’s support, I drafted an extensive
paper and submitted it to IJHCS, but got rejected again.

This setback was particularly disheartening as I was entering the third year of my
PhD without any significant publications in top-tier journals. This experience prompted
me to introspect and critically evaluate my research methodologies. It raised important
questions about the true promise of this direction: Is it truly promising and suitable for
me, or does it merely appear promising without truly being so? Alternatively, could it
be promising but not the right fit for my skills and interests? Eventually, I decided to
shift my focus away from this research direction. To sum up this project, I condensed
my findings into a short paper format and published it on the CHI2022 late-breaking
work track.

2.3 A New Start: Using AI for Qualitative Analysis

During this period of frustration and self-doubt, the two pressing questions resurfaced
in my mind: Why not address the efficiency issue in qualitative analysis, a critical
method in HCI, using cutting-edge technology like BERT? As qualitative analysis is
a fundamental method in HCI and numerous other fields, this issue is of significant
importance and warrants the investment of my efforts to make a potentially impactful
contribution. Although my previous attempt at integrating technology with qualitative
analysis didn’t yield big success, I realized it was time to leverage my strengths. My
undergraduate and master’s studies had honed my skills in tool-building, and I was
confident in my ability to rapidly learn new technologies. Even if I wasn’t an expert, I
knew I could collaborate with others to overcome technical challenges.

This renewed perspective coincided with a lab meeting where I encountered Dr.
Kenny6 discussing the intersection of HCI and NLP in research. It resonated deeply
with my thoughts. Consequently, I engaged in several conversations with Kenny,
who then advised me to start attending weekly meetings with a group of professors,
including Simon, Prof. Roy Lee7, and himself. I seized this opportunity and, during

4https://istd.sutd.edu.sg/people/faculty/lu-wei
5https://people.sutd.edu.sg/~kwanhui_lim/
6https://kennychoo.net/
7https://info.roylee.sg/

https://istd.sutd.edu.sg/people/faculty/lu-wei
https://people.sutd.edu.sg/~kwanhui_lim/
https://kennychoo.net/
https://info.roylee.sg/

Chapter 2. Choice of Research Topic 15

these meetings, shared insights and papers on Human-AI interaction and collaboration.
At that time, these topics were still emerging in the field, offering a fresh and exciting
research avenue.

2.4 A Paper on This Topic Emerges at CHI

In early 2021, a CHI paper by Rietz et al. (Rietz and Maedche, 2021) left me feeling
disheartened, as it appeared that my idea had already been explored. This led to a
period of reflection and exploration spanning several weeks, even the entire summer,
as I pondered my next steps. The application of AI and classification models, like SGD
techniques, in providing code suggestions for text data, was already a reality. I needed
to identify my unique research gap.

When my attempts to obtain code from the authors of the CHI paper yielded no
response, I did not give up and decided to develop a similar tool using a different
approach, focusing on intent recognition. This choice was strategic, as there are numerous
existing APIs for intent recognition provided by major companies like Facebook and
Google, which promised to simplify the development process.

2.5 At Last: Pathway to Integrating AI in Qualitative Analysis

Following a few weeks of exploration, I presented my preliminary findings and the
tools I had investigated to Kenny. In response, he proposed an interesting angle: exploring
the collaborative aspect of the tool, specifically how it could enable two researchers to
work together on coding tasks. Kenny was quite enthusiastic about this idea, but to
me, it seemed too simplistic and lacked the innovative edge I was seeking. It felt like an
"easy" research path, and I was aiming for something more challenging. Consequently,
I declined Kenny’s suggestion.

I then approached Simon for advice on the viability of this research direction. He
did not give me a concrete answer at that time, which I understood. Predicting the
success of a new research path is difficult, and there are no guarantees of success,
especially in uncharted territories.

However, I soon reconsidered my stance. Although the idea appeared simple, it
was undoubtedly feasible. Even if the innovation wasn’t groundbreaking, I didn’t have
any other significant ideas at hand. So, I thought, why not give it a try? Perhaps by
delving into it, I might uncover something truly intriguing. I decided to pursue this
path with the mindset that if a better idea emerged, I could always pivot towards it.

At that time, there was a risk that this new direction might also not yield the desired
results, just like my previous endeavors. But fortunately, this was not the case. The

Chapter 2. Choice of Research Topic 16

field started to gain traction and became increasingly popular. Being among the first to
venture into this exciting, new, and emerging area of research felt exhilarating.

Now, let me begin to delve into the details of my PhD work.

17

Chapter 3

Background and Related Work

3.1 Qualitative Analysis and Its Methods

3.1.1 What is Qualitative Analysis?

Qualitative research is widely embraced across various disciplines, including but not
limited to social science, anthropology, political science, psychology, educational research,
and human-computer interaction (Charmaz, 2014; J. Corbin and Strauss, 2014; Lazar,
Feng, and Hochheiser, 2017a). It is an important methodology for interpreting data
from interviews, focus groups, observations, and more (Lazar, Feng, and Hochheiser,
2017b; Flick, 2013). The goal of qualitative analysis is to transform unstructured data
into detailed insights regarding key aspects of a given situation or phenomenon, addressing
researchers’ concerns (Lazar, Feng, and Hochheiser, 2017b). Commonly employed
strategies include Grounded Theory (Flick, 2013) and thematic analysis (Maguire and
Delahunt, 2017).

3.1.2 Methodology: Grounded Theory, thematic analysis, and others

Grounded Theory (GT), originally formulated by Glaser and Strauss (Glaser and Strauss,
2017; Flick, 2013). Its primary objective is to abstract theoretical conceptions based on
descriptive data (J. Corbin and Strauss, 2008; Bryant and Charmaz, 2007). A primary
approach in GT involves coding, specifically assigning codes to data segments. These
conceptual codes act as crucial bridges between descriptive data and theoretical constructs
(Bryant and Charmaz, 2007). In particular, GT coding involves two key phases: initial
and focused coding. In initial coding, researchers scrutinize data fragments—words,
lines, or incidents—and add codes to them. During focused coding, researchers refine
initial codes by testing them against a larger dataset. Throughout, they continuously
compare data with both other data and existing codes (Charmaz, 2014), in order to
build theoretical conceptions or theories. Similarly, thematic analysis is another method
commonly used for analyzing qualitative data, aimed at identifying, analyzing, and

Chapter 3. Background and Related Work 18

elucidating recurring themes within the dataset (Braun and Clarke, 2006; Maguire and
Delahunt, 2017).

Charmaz (Charmaz, 2014) presented two phases in the Grounded Theory: Initial
Coding (or Open Coding) and Focused Coding. Serving as the preliminary step in transitioning
from raw data’s concrete ideas and concepts to formulating analytic interpretations
(Charmaz, 2014), Open Coding involves assigning a summarizing label to varied segments
of data, with sizes ranging from a single word to a full paragraph (Charmaz, 2014;
Saldaña, 2021; J. Corbin and Strauss, 2014; DeCuir-Gunby, Marshall, and McCulloch,
2011). Subsequently, these labels or codes undergo thorough discussion within a team,
leading to the development of a codebook. This codebook comprises a variety of
labels/codes correlating with the raw data, thereby facilitating further data analysis
(DeCuir-Gunby, Marshall, and McCulloch, 2011).

Open Coding Team
Discussion Codebook Final Coding

Multiple Iterations

FIGURE 3.1: A Circular Coding Process (See More in DeCuir-Gunby,
Marshall, and McCulloch, 2011; Richards and Hemphill, 2018; Saldaña,

2021).

Nonetheless, the coding process is labor-intensive and demands significant effort,
often necessitating multiple iterations within a team (Marathe and Toyama, 2018b;
Rietz and Maedche, 2021; Yan, McCracken, and Crowston, 2014). This is because the
development of the codebook is not a linear process but rather cyclical in nature (see
Figure 3.1), during which Open Coding acts as a key step (Charmaz, 2014; DeCuir-Gunby,
Marshall, and McCulloch, 2011) and is inevitably revisited multiple times. Often,
researchers need to revisit raw data, potentially collecting more data and conducting
additional coding until reaching saturation, ensuring no nuanced information is overlooked.

The aforementioned open coding resembles an inductive approach, where patterns
in the data are identified during the coding and labeling process. In contrast, focused
coding aligns more with a deductive approach, involving coding based on a pre-existing
theory (Azungah, 2018; Fereday and Muir-Cochrane, 2006). A detailed description of
the two approaches is presented in Figure 3.2.

3.1.3 Collaborative Qualitative Analysis

CQA plays an important role in qualitative research and fosters robust and dependable
interpretations of qualitative data (Anderson, Guerreiro, and J. Smith, 2016; Richards
and Hemphill, 2018; Flick, 2013). Cornish et al. provide a more detailed definition of

Chapter 3. Background and Related Work 19

FIGURE 3.2: Preparation, organisation and qualitative data analysis
process. Figure from Azungah, 2018.

Chapter 3. Background and Related Work 20

CQA, describing it as "a process in which there is joint focus and dialogue among two or more
researchers regarding a shared body of data, to produce an agreed interpretation" (Cornish,
Gillespie, and Zittoun, 2013).

Several practical frameworks exist for conducting CQA (Hall et al., 2005; Bryant and
Charmaz, 2007; Richards and Hemphill, 2018). Particularly, Richards et al. (Richards
and Hemphill, 2018) have proposed a six-step methodology rooted in GT and thematic
analysis. The methodology encompasses the following steps: 1 preliminary organization
and planning: An initial team meeting outlines project logistics and sets the overall
analysis plan; 2 open and axial coding: Team members use open coding to identify
concepts and patterns, followed by axial coding to link these patterns (J. Corbin and
Strauss, 2008; Flick, 2013); 3 development of a preliminary codebook: One team
member reviews the memos and formulates an initial codebook; 4 pilot testing the
codebook: After creating the initial codebook, it is tested on new data. Researchers
independently code 2-3 transcripts and note codebook issues in their journals; 5 final
coding process: The updated codebook is applied to all data, including initially-coded
transcripts; and 6 review and finalization of the codebook and themes: After coding
all transcripts, either by consensus or split coding, the team holds a final meeting to
finalize the codebook.

Richards et al. also delineate two distinct CQA approaches: consensus coding and
split coding. Consensus coding is more rigorous but time-consuming; each coder independently
codes the same data and then engages in a team discussion to resolve disagreements
and reach a consensus. Conversely, split coding is quicker but less rigorous, with coders
working on separate data sets. This method leans heavily on the clarity established
during the preliminary coding phases and pre-defined coding conventions.

3.2 Human, Traditional AI, and Qualitative Analysis

3.2.1 Definition of Human-AI Collaboration, Human-AI Interaction, and
Human-Centric AI

We are witnessing an era where AI, once a broadly accessible technology, is increasingly
becoming the domain of large corporations due to the high costs associated with training
large models. Concurrently, there’s a shift towards human-centered AI. Many big
companies and universities are establishing their own human-centered AI guidelines
and departments. As an emerging field, human-AI interaction, human-AI collaboration
and human-centered AI have gained significant attention following the rise of models
like GPT. These terms frequently headline blogs, articles, and news stories. However,
to the best of my knowledge, no universally accepted definition differentiates these
terms or the nuances they represent.

Chapter 3. Background and Related Work 21

A term that seems to encapsulate these concepts, as proposed in Ben Shneiderman’s
book (Shneiderman, 2022), has gained wide acceptance. This term, Human-Centered
AI (Artificial Intelligence), is defined as ’focusing on enhancing human performance, making
systems reliable, safe, and trustworthy.’ This approach contrasts with traditional AI, which
primarily focuses on automating tasks traditionally performed by humans, such as
pattern recognition, language processing and translation, speech and image generation,
and strategic games like chess (Shneiderman, 2020).

If the essence of human-centered AI lies in enhancing AI’s reliability, safety, and
trustworthiness, then human-AI collaboration is about improving the collective performance
of teams comprising both humans and AI. Wang et al.’s definition in CHI2020 (Wang
et al., 2020) adapts the concept of traditional collaboration—emphasizing mutual goal
understanding, task co-management, and shared progress tracking, typically among
humans—to the context of human-AI collaboration. By adopting a Computer-Supported
Cooperative Work (CSCW) perspective (Wang et al., 2020), integrating AI into human
workflows can potentially exceed the capabilities of humans or AI working solo (Campero
et al., 2022).

However, the Interaction Design Foundation1 offers a slightly different perspective,
defining Human-AI Interaction as the study and design of communication and collaboration
between humans and AI systems. This definition appears to overlap considerably with
that of human-AI collaboration. The distinguishing factor, however, may lie in the
emphasis of each. Human-AI interaction, as the name suggests, might focus more on
designing interactive technologies that facilitate collaboration between humans and
AI. This approach aligns closely with the ethos of UIST (ACM Symposium on User
Interface Software and Technology)2, which concentrates on innovations in human-computer
interfaces.

3.2.2 (Semi)-Automating Qualitative Analysis

For decades, there has been a substantial effort to integrate AI into qualitative analysis,
signifying a long-standing history of such endeavors. Before delving into our review
of the current landscape of LLMs in qualitative analysis, it’s crucial to acknowledge
some of the initial attempts in this field. While these early technologies might not have
achieved the level of performance seen in models like GPT-4, understanding them is
essential for building a foundational knowledge of the evolution of this research area.

One main category is to use (semi)automated techniques to facilitate qualitative
analysis. Some of these studies (Marathe and Toyama, 2018b; Crowston, X. Liu, and

1https://www.interaction-design.org/literature/topics/
human-ai-interaction#:~:text=Human%2DAI%20interaction%20can%20ensure,
promote%20mutual%20understanding%20and%20cooperation.

2https://uist.acm.org/2023/

https://www.interaction-design.org/literature/topics/human-ai-interaction#:~:text=Human%2DAI%20interaction%20can%20ensure,promote%20mutual%20understanding%20and%20cooperation.
https://www.interaction-design.org/literature/topics/human-ai-interaction#:~:text=Human%2DAI%20interaction%20can%20ensure,promote%20mutual%20understanding%20and%20cooperation.
https://www.interaction-design.org/literature/topics/human-ai-interaction#:~:text=Human%2DAI%20interaction%20can%20ensure,promote%20mutual%20understanding%20and%20cooperation.
https://uist.acm.org/2023/

Chapter 3. Background and Related Work 22

E. E. Allen, 2010; Paredes et al., 2017) suggest utilizing code rules for extracting pertinent
sections from a given text. For instance, a Boolean rule for Definition of arts

may be constructed by linking various keywords using Boolean operators such as
AND, OR, and NOT (e.g., (definition OR define OR constitute) AND art)
(Marathe and Toyama, 2018b). This rule is then evaluated against a target text, and a
match is identified if their similarity surpasses a specified threshold.

Moreover, scholars propose code pattern auto-detection in order to support more
flexibility (Nelson, 2020; Gebreegziabher et al., 2023). For instance, Nelson’s three-step
method (Nelson, 2020) applies unsupervised machine learning for data pattern discovery,
enhancing scalable, exploratory analysis. Meanwhile, PaTAT, introduced by Gebreegziabher
et al. (Gebreegziabher et al., 2023), finds user coding patterns in real-time, predicting
future codes. These studies indicate that auto-detection of code rules for partial automation
shows significant potential.

Furthermore, unsupervised machine learning approaches, such as topic modeling (Baumer
et al., 2017; Leeson et al., 2019; Felix, Dasgupta, and Bertini, 2018; Hong et al., 2022),
have proven valuable for detecting topics or labels in qualitative data, especially when
dealing with large-scale datasets. By identifying statistical regularities within text,
topic modeling can discern thematic patterns, yielding results akin to traditional grounded
theory methods (Leeson et al., 2019; Muller et al., 2016). This approach allows researchers
to uncover topics or labels during the early stages of qualitative analysis more effectively (Felix,
Dasgupta, and Bertini, 2018; Nguyen et al., 2021; Kaufmann, Barcomb, and Riehle,
2020).

In addition, supervised techniques such as text classification has gained widespread
usage in qualitative analysis. For instance, Yan et al. (Yan, McCracken, and Crowston,
2014) utilized Support Vector Machine (SVM) classification, using pre-selected features
and parameters. They trained the SVM model with codes provided by human coders to
classify large-scale text data. In a similar vein, Rietz et al.’s Cody (Rietz and Maedche,
2021) used a logistic regression model, employing stochastic gradient descent (SGD)
learning. This model was trained to categorize unseen data based on existing annotations.

3.2.3 (Semi)-Automating Collaborative Qualitative Analysis

While these initial methods and efforts in AI for qualitative analysis are noteworthy,
progress in this area has been gradual, primarily due to limitations in AI performance.
This bottleneck has led to a lack of confidence in developing truly effective tools. Consequently,
many studies have concentrated on specific key aspects of qualitative analysis like
collaboration (Gao, Choo, et al., 2023).

For example, Zade et al. (Zade et al., 2018) proposed a strategy that enables coders
to order the degrees of consensus, using tree-based ranking metrics to quantify coding

Chapter 3. Background and Related Work 23

ambiguity. This ordering can extend from the most ambiguous to the least, or from
low to high agreement. Likewise, Aeonium, introduced by Drouhard et al. (Drouhard
et al., 2017), is a visual analytics system that assists team members with tools to review,
edit, and add code definitions and examples shared within the team. It also enables
monitoring of the coding history throughout the process, with the aim of revealing
disagreements and reducing ambiguity. Furthermore, Ganji et al. (Ganji, Orand, and
D. W. McDonald, 2018) introduced Code Wizard, a visualization tool embedded in Excel
that leverages the certainty level of the codes assigned by all coders to highlight highly
ambiguous codes. In addition, it enables the aggregation of individual coding tables,
the automated sorting and comparison of coded data, and the calculation of inter-rater
reliability. All the above works improve discussions between coders, allowing coders
to focus on the most challenging aspects of the work. However, they caused the CQA
process to diverge somewhat from the traditional coding procedure, introducing additional
steps and consequently increasing the overall complexity (Chinh et al., 2019). As a
consequence, these tools demand much learning and acclimatization, which could potentially
pose new challenges for users.

On the other hand, current commercial CQA software like MaxQDA3, Atlas.ti4,
nVivo5 and Google Docs (Freitas et al., 2017; Nielsen, 2018), demonstrate a more intuitive
and user-friendly approach, largely maintaining the familiarity of traditional coding
procedures while offering the benefits of modern collaborative tools. MaxQDA, for
instance, provides a feature for merging coding documents from multiple coders once
independent coding is complete (Secure & Seamless Cloud Collaboration for Teams n.d.;
Oswald, 2019; Marathe and Toyama, 2018b). The web version of Atlas.ti and Google
Docs boasts even more advanced capabilities: they permit multiple users to code simultaneously
and synchronize modifications in real time. The seamless integration of simultaneous
coding and real-time synchronization significantly reduces workflow disruptions and
promotes efficient and effective collaboration, addressing the issue of delayed information
updates among team members, a common drawback found in other systems (Marathe
and Toyama, 2018b). However, we’ve noticed that tools like Atlas.ti and Google Docs
allow users to code and view others’ codes within a shared document. This functionality
could potentially introduce substantial bias among coders (Anderson, Guerreiro, and
J. Smith, 2016), as it means that a coder’s work is continually visible to their peers.

Meanwhile, there’s a growing interest in leveraging AI to augment CQA. For example,
Rietz et al. (Rietz and Maedche, 2021) recognized the potential of AI in CQA and call
for efforts to examine the extent to which code rules and formulas can assist multiple
coders in discussing their interpretations of codes during the coding process. The

3https://www.maxqda.com
4https://atlasti.com
5https://lumivero.com/products/nvivo/nvivo-product-tour/

https://www.maxqda.com
https://atlasti.com
https://lumivero.com/products/nvivo/nvivo-product-tour/

Chapter 3. Background and Related Work 24

authors also suggested investigating how coders interact with suggestions generated
based on their co-coder’s coding rules. This underscores the prospective advantages
that AI integration could introduce to the CQA process.

In summary, although collaboration is fundamental in qualitative analysis, and AI
has been extensively explored in individual qualitative analysis contexts, the realm of
AI-assisted collaborative qualitative analysis is still relatively underexplored. This
gap presents a unique opportunity to investigate the feasibility and potential of AI in
enhancing collaborative qualitative analysis at that stage.

3.3 Generative AI and Qualitative Analysis

Since the end of 2022, ChatGPT6, a chat interface powered by OpenAI’s LLMs like
GPT-3.5, has revolutionized human-computer interaction. This innovation has ushered
in a new era of human-AI interaction and human-LLM interaction. Overnight, human-centered
AI and human-AI collaboration have become the focal points of HCI research.

3.3.1 Large Language Models and Generative AI

There have been two significant shifts in the learning approaches of NLP models (P.
Liu et al., 2023). The first occurred between 2017 and 2019, marking a departure from
the earlier supervised learning paradigm, where task-specific models were trained
exclusively on datasets of input-output examples for targeted tasks, such as text classification.
Post-2017-2019, the standard practice transitioned to the ’pre-train and fine-tune’ paradigm.
Here, a model with a fixed architecture is initially pre-trained as a language model
(LM).

Around 2021, the second sea change emerged, replacing the ’pre-train, fine-tune’
approach with a ’pre-train, prompt, and predict’ method. Instead of adapting pre-trained
LMs to downstream tasks through objective engineering, this new approach reformulates
downstream tasks to resemble those solved during the original LM training, utilizing
textual prompts. This method enables the use of a single LM, trained in an entirely
unsupervised manner, to solve a wide array of tasks using a suite of appropriate prompts.
Early models that exemplify these shifts include GPT, GPT-2, and GPT-3.

These models are also known as Generative AI. IBM describes it as: "Generative AI
refers to deep-learning models that can generate high-quality text, images, and other
content based on the data they were trained on."7. Given this capability, Generative AI
has found applications in various fields, including education, gaming, the metaverse,
media, advertising, film, music, and coding, to name a few (Chaoning Zhang et al.,

6https://openai.com/blog/chatgpt
7https://research.ibm.com/blog/what-is-generative-AI

https://openai.com/blog/chatgpt
https://research.ibm.com/blog/what-is-generative-AI

Chapter 3. Background and Related Work 25

2023). In education, for instance, generative AI aids teachers in designing course materials
and providing personalized tutoring. In the media sector, it enhances the efficiency of
practitioners through tools like automated writing assistants, virtual news anchors, and
caption generation, among others (Xiao, 2023). Each area also benefits uniquely from
the technology’s ability to create and innovate, thereby shaping new possibilities and
experiences.

3.3.2 Generative AI and Human-LLM Collaboration

There are numerous methods to apply generative AI across different fields. For designers,
one approach is to create various interfaces or tools tailored to specific tasks. Writing,
specifically, has gained popularity as a task due to its alignment with the input and
output capabilities of LLMs in text form. Researchers have explored using LLMs to
support writing, ideation, storytelling, and more. For instance, Lee et al.(M. Lee, Liang,
and Yang, 2022) introduced CoAuthor, a human-AI collaborative writing dataset that
demonstrates language, ideation, and collaboration capabilities in creative and argumentative
writing. Building on this, the work of Zhang et al.(Z. Zhang et al., 2023) delved into
the chain-of-thought interface design (Wu, Terry, and Cai, 2022; Wu, E. Jiang, et al.,
2022), which aids in the ideation of arguments. This design enables users to develop
arguments from a single point to multiple points and to generate text with varying
levels of abstraction. Similarly, Kim et al. (Kim et al., 2023) introduced a design framework
that aids in organizing both the input and output for generative AI tasks. This framework
enables interface designers to empower users in generating various iterations of textual
objects. It supports the flexible creation, modification, and linking of objects, allowing
users to experiment with diverse configurations.

3.3.3 Using Generative AI to Support Qualitative Analysis

Recent advancements in LLMs also have sparked interest in their application for qualitative
analysis, owing to their enhanced text generation, comprehension, and summarization
abilities (OpenAI, 2023). To enhance coding efficiency, Atlas.ti Web has incorporated
OpenAI’s GPT models to provide one-click code generation and AI-assisted code suggestions8.
Other software predominantly depend on manual human evaluation or basic AI applications,
such as word frequency counting or sentiment analysis.

On the research side, Byun et al. (Byun, Vasicek, and Seppi, 2023) posed the question:
"Can a model possess experiences and utilize them to interpret data?" They examined various
prompts to assess theme generation by models such as text-davinci-003, a fine-tuned
variant, and ChatGPT (referred to as gpt-turbo in their experiment). Their approach

8https://atlasti.com/atlas-ti-ai-lab-accelerating-innovation-for-data-analysis

https://atlasti.com/atlas-ti-ai-lab-accelerating-innovation-for-data-analysis

Chapter 3. Background and Related Work 26

involved methods like one-shot prompting and question-only techniques. Their findings
suggested that these models are adept at producing human-like themes and posing
thought-provoking questions. Furthermore, they discovered that subtle changes in
the prompt — transitioning from "important" to "important HCI-related" or "interesting
HCI-related" — yielded more nuanced results. Additionally, Xiao et al. (Xiao et al., 2023)
demonstrated the viability of employing GPT-3 in conjunction with an expert-developed
codebook for deductive coding. Their findings showcased a notable alignment with
expert ratings on certain dimensions. Moreover, the codebook-centered approach surpassed
the performance of the example-centered design. They also mentioned that transitioning
from a zero-shot to a one-shot scenario profoundly altered the performance metrics of
LLMs.

27

Chapter 4

Examining the Effectiveness of
AI-assisted Human-to-Human
Collaboration in Qualitative
Analysis

4.1 Goals and Context

Based on our literature review, we have identified three main phases in inductive
collaborative qualitative analysis, aimed at developing a coding schema. These phases
include independent open coding, team discussions for forming code groups, and the
final application of the coding schema. Notably, discussion is a critical phase where
users resolve disagreements and form a consensus.

At the time this work was conducted, while considerable efforts had been made
in AI-assisted qualitative analysis, attempts at integrating collaboration in this context
were lacking. At that time, LLMs had not evolved to their current state. We utilized
a pre-trained language model, Bert, exploring whether fine-tuning this model with a
group’s coding history could foster a shared understanding of "group knowledge."

Motivated by these, I initiated research on AI-assisted collaborative qualitative coding.
Specifically, I investigated the potential of AI in supporting CQA and explored the
feasibility of AI for human-to-human collaboration that goes beyond the conventional
human-AI interactions found in existing work.

4.2 Formative Interview

To understand the current CQA practices, challenges, and users’ anticipations when
integrating AI, we conducted a series of semi-structured interviews with HCI researchers
possessing varying levels of CQA experience. Our university’s Institutional Review
Board (IRB) granted approval for these interviews.

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

28

4.2.1 Methodology

Our semi-structured interviews involved 8 HCI researchers (4 females, 4 males, mean
age = 29.9 years), all of whom possessed experience in QA and CQA. The participants
encompassed two postdoctoral researchers (P1, P2), two senior graduate researchers
(P3, P4) regularly utilizing (C)QA in their work, and four junior graduate researchers
(P5, P6, P7, P8) possessing a minimum of 1.5 years of experience in (C)QA. Further
details, including their respective fields of study, educational background, software
used for (C)QA, and the duration of QA use in their research, can be found in Table 4.1.

During the interview, we asked participants to reflect upon and share their most
notable CQA experiences. In addition to narrating their experiences, we requested
participants to demonstrate their data coding process via screen sharing when feasible.
We also explored the challenges they encountered with their chosen tools, as well as
their expectations concerning potential AI assistance in the process. All interviews,
lasting between 20 and 60 minutes, were conducted virtually, audio-recorded, and
transcribed through Zoom to facilitate subsequent analysis.

To derive nuanced insights from our data, two authors, including the interviewer
and an experienced qualitative researcher, employed a CQA process as per Richards et
al. (Richards and Hemphill, 2018). The coders began with independent open coding
of two representative transcripts (P2, P3). Following this initial round, they convened
to discuss similarities, reconcile code conflicts, and establish consensus on a primary
codebook. The codebook was then tested and refined using two additional interview
transcripts (P1, P4). Lastly, the first coder processed the remaining four transcripts
(P5-P8). The findings from this process are presented in the following subsection.

4.2.2 Findings

Basic CQA Process

Our participants generally followed the main steps of the CQA process outlined by
Richard et al. (Richards and Hemphill, 2018). The following summarises their practices:

TABLE 4.1: Demographics of Interview Participants. Every participant
was working in tje field of HCI and was a master’s student or above.

Participant ID Fields of Study Education QA Software QA Experience (Years)
P1 HCI, Mobile Computing Postdoc Excel 9
P2 HCI, Healthcare Postdoc nVivo/Atlas.ti/MaxQDA/Excel 7
P3 HCI, Ubicomp Ph.D. student Atlas.ti/Excel 4
P4 HCI, AI Ph.D. student Whiteboard/Google Sheet 4
P5 HCI, VR Ph.D. student Word/Excel/nVivo 2
P6 HCI, Healthcare Master’s Student Google Docs 3.5
P7 HCI, Chatbot Master’s Student Atlas.ti 3
P8 HCI, Security, Privacy Master’s Student Atlas.ti/Excel 1.5

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

29

1. Each coder in the team receives a copy of the data (e.g., interview transcripts, and
qualitative notes). They individually review the material and identify key points
and primary codes through a process known as initial coding or open coding.

2. The coders convene to discuss their respective codes and selected key points. During
these discussions, they address any discrepancies or differences in understanding
and interpretation of the codes. Through this, they aim to reach a consensus and
propose a primary codebook. One participant described this process as follows:
"The first level of analysis is like: I have a copy of the data, and my collaborator has another
copy, and we’ll assign primary codes. Then we sat down and discussed them, and see if he or
she agrees. If there is disagreement, we will rethink the code and discuss." (P1, postdoc with
9 years of QA experience).

3. The coders proceed to code additional data and expand the content within the codebook.
This iterative process is often repeated for several rounds until the codes stabilize.
One participant explained this process as follows: "Based on the existing [codes in]
open coding, we can roughly divide it into several pieces [or groups], and then pick out a few
themes. [Sometimes] it is difficult to determine the theme, then there will be several rounds
discussions [to decide the themes]." (P6, Master’s student with 3.5 years of QA experience).

4. Once the codebook reaches a stable state, one or more coders employ this finalized
codebook to code the remaining data.

5. The coders proceeded to generate reports based on their findings. These reports
synthesized the coded data and identified emerging themes, patterns, and examples
derived from the analysis.

However, in our inquiries about the specific methods employed for CQA, there
were different responses regarding their preferred approaches. Some participants indicated
utilizing grounded theory (J. Corbin and Strauss, 2014; Bryant and Charmaz, 2007),
while others mentioned adopting thematic analysis (Maguire and Delahunt, 2017; J. A.
Smith, 2015; Braun and Clarke, 2006). These methodological choices were influenced
by the specific requirements and objectives of their respective projects.

Specifically, when time and resources permit, and when participants discern the
primary value of their project in the findings of qualitative research—especially in
the absence of solid expectations or hypotheses for the data—they typically engage
in a more strict CQA process (Lazar, Feng, and Hochheiser, 2017a) or even grounded
theory, as previously described. This approach fosters a deeper, more inductive, and
nuanced understanding, consequently leading to insightful revelations. One participant
explained the rationale behind this approach: "I think the reason [for following a strict
CQA process in this project] maybe because first, we have more people and collaborators, and

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

30

secondly, because this paper mostly depends on the qualities of the codes we’ve evolved. We wish
it’s a primary contribution, so it’s like the difference in purpose [determines the methods and the
strictness levels we use]." (P4, Ph.D. student with 4 years of QA experience).

In the context of a study that encompasses mixed contributions, participants tend
to favor thematic analysis when they have clear expectations and a more structured
framework in mind. This approach, encompassing steps from "Generate initial codes"
to "Define themes" (Braun and Clarke, 2006; Maguire and Delahunt, 2017), places a
greater emphasis on the testing and refinement of pre-defined themes than strictly
following the step-by-step collaboration described above. One potential deviation observed
is the utilization of a predefined codebook instead of initiating the coding process
with open coding, which is a characteristic of the traditional CQA methodology. As
explained by one participant: "For me, for example, if it’s research mostly employing mixed
methods, meaning you have both quantitative and qualitative data, in that case, if you have
the quantitative research, then you use the qualitative to support this argument from another
perspective. In that case, you can directly go for something like thematic analysis, and it’s easy
because you know what to expect." (P3, Ph.D. student with 4 years of QA experience).

Difficulties in Performing Collaborative Qualitative Analysis

D1: Slow and time-consuming. The participants unanimously acknowledged that
CQA is a time-intensive endeavor. The complete process of qualitative coding alone
can span several weeks to several months for individual coders. When collaboration is
involved, the duration is further extended due to "multiple rounds" of discussion and
testing a comprehensive codebook (P4, Ph.D. student with 4 years of QA experience). As
expressed by one participant: "It does take a lot of time. A 30-minute interview could be
converted into seven or eight thousand words. I had to spend an hour or two to do independent
coding, and another three hours to discuss." (P5, Ph.D. student with 2 years of QA experience).
Moreover, in cases where the coding process extends over a significant duration, coders
often find it necessary to re-read the text during the reflection stage. "The difficulty [of
CQA] could be time-consuming. Especially if you do it twice, you have to read it again." (P1,
a postdoc with 9 years of QA experience). Additionally, if one of the coders in the coding
team works at a slower pace or struggles to keep up with the progress, it can result in
an extension of the overall coding time (P3, Ph.D. student with 4 years of QA experience).

Yet, the time-consuming nature of the CQA process presents a valuable opportunity
for junior researchers to actively engage and contribute, as they often have more flexibility
and availability, allowing them to dedicate ample time to the rigorous coding process
involved in CQA. For example, half of the participants (P1-P4) were involved in projects
that fostered collaboration with junior researchers, including those with little to no
prior coding experience. Remarkably, in these collaborations, the code suggestions

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

31

from both groups were treated with equal importance and consideration. One participant
explained their approach: "Actually I work with some junior students. In this case, I
think the first time we would encourage them to read the book chapters about how to conduct
coding...After a few runs of demonstrations, in most cases, they become, you know, better QA
[coders]." (P4, Ph.D. student with 4 years of QA experience)

D2: Coding bias and the struggle for independent coding In a strict CQA process,
individual coders are expected to do coding independently from their own perspectives.
However, the current QA software available, such as Atlas.ti, often poses challenges in
merging codes when coders perform open coding independently in separate documents.
This limitation can lead to coders relying on shared documents on Atlas.ti Web or
Google Docs to label the data, benefitting from their easy and real-time data synchronization
feature.

However, this shared feature has its drawbacks. The visibility of each other’s codes
may result in mutual influence, potentially biasing the coding process. This concern
was reported by 6 out of 8 participants. As one participant described: "So the main one
[difficulty] is usually very hard to separately do the coding...if one person has coded, then the
next person will see that person’s coding, which means that you are influenced by other coders’
coding. You cannot select codes you added or switch off all the coding coming from others’
perspectives. The view gets very overlapped and then gets very confusing." (P2, postdoc with 7
years of QA experience).

Similarly, although P6 did not explicitly mention the issue of code bias, it was
observed through her shared coding practices that she utilized Google Docs to collaborate
with her colleagues on a shared page. This collaborative approach inadvertently allowed
all collaborators to view and access the codes being generated.

D3: Trade-offs in utilizing QA software vs. traditional text editors Most participants
(6/8) favored traditional text editing tools like Google Docs and Excel over professional
QA software like Atlas.ti or nVivo, finding the current features of text editors sufficient
for their needs. "We use Excel because it just has all essential functions that we need, like
filtering, data validation and removing duplicates." (P1, postdoc with 9 years of QA experience).

This can also be seen as an outcome of the deliberation of weighing the learning
costs against the potential benefits: QA software such as nVivo is described as having a
"steep learning curve" (P4, Ph.D. student with 4 years of QA experience), yet it seemingly
does not provide substantial advantages over conventional tools. Users anticipate
more sophisticated features in return for their significant learning investment—like
auto-grouping similar codes among coders. This deliberation often leads many to favor
simpler tools that are easier to master and require a lower investment in learning. One
Ph.D. student with 2 years of QA experience (P5) shared, "I also tried to use nVivo [to do

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

32

collaboration]. I found that when using nVivo, I can not group together codes and text from
three coders [automatically]. So later we just used Excel."

However, shifting to traditional text editors can pose challenges when handling
large and diverse datasets, especially with an extensive codebook. As one participant
noted, "The final codebook is very large, with a lot of themes, it is troublesome to read." (P5,
Ph.D. student with 2 years QA experience). Moreover, users may forget their proposed
codes in open coding, relying on "memory and perception" (P6, Master’s student with
3.5 years of QA experience) to generate the initial codebook. This often complicates
subsequent stages of qualitative coding, requiring additional work, such as expanding
the codebook or necessitating another round of CQA.

D4: Trade-offs of using a predefined codebook Some participants (3/8) indicated
that the practice of lead coders proposing a primary codebook for the team to follow
could streamline the coding process. As one participant described, "I developed an initial
codebook. I sent a copy to the two coders to let them do some coding on their own. Then
after 1 week, they sent it back to me with their codes. Then we do a comparison to solve the
disagreements." (P8, Master’s student with 1.5 years of QA experience).

Yet, this could potentially restrict the benefits of CQA. P1, a postdoc with 9 years
of QA experience, shared her opinion, "It sorts of restricts the categories. They only had to
code the data in a certain way."

However, some participants acknowledged situations where, despite recognizing
it as less than "strict", they would adopt this strategy due to time constraints: "For my
project, we have very limited time to do coding, then my collaborator and I do coding for the
whole transcripts with the codebook I proposed. If I have enough time, I would definitely do a
stricter qualitative analysis."(P4, Ph.D. student with 4 years of QA experience).

D5: Interpretational variations and granularity challenges Interpretational divergence
is a common occurrence among coders working on the same data, leading to distinct
coding outcomes. P1, a postdoc with 9 years of QA experience, stated, "The difficulty
comes after [coding] the first round codes. We always have different ways of interpreting
things.". Furthermore, coders could assign codes with differing levels of specificity,
causing extra work and necessitating further discussion to reconcile the codes: "My
codes are broader, my partner is more specific. My codes usually cover the whole category. But
hers give a bit more subcategories...the thing is I don’t want the subcategories. I just want all
the codes to be the same categories."(P7, Master’s student with 3 years of QA experience).

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

33

Suggestions for AI-assisted CQA tools

S1: AI generates code suggestions based on code history The majority of our participants
(6/8) express a desire for AI to provide code suggestions, with the most preferred
source being their personal coding history. "So if this content and that content suddenly
matches up, it would be nice for AI to just assist me and say, ‘hey, you’ve done this before! Why
don’t you assign this code to this code that you have already assigned?’ And I may not have
remembered, because there were a lot of things I processed along the way." (P1, a postdoc with
9 years of QA experience).

P3, a Ph.D. student with 3 years of QA experience, expressed skepticism towards
an AI system in which codes are derived from external sources, such as other projects
or AI-generated suggestions: "Initially, the coding is a thinking process. I don’t want to
interrupt the [open coding] thing. I don’t want to be biased by somebody in the thinking
process...Because any suggestion is biased. Once I finish initial coding, AI can suggest like,
for example, then AI just shows like these are similar. These are different. Then I can use that
feature similar to the initial coding. Then you refer my codes to feed the AI suggestions. I think
that can improve the coding. If AI suggests [by its own], I don’t trust anyway."

S2: AI facilitates coding conflict detection In our discussions with participants, we
confirmed Zade et al.’s (Zade et al., 2018) previous analysis that a text selection analyzed
by multiple coders could lead to 1) divergence: entirely distinct or even opposing
interpretations, or 2) diversity: identical interpretations conveyed through different
expressions, such as "not bad" and "well". Both scenarios necessitate coders to scrutinize
the text, highlight the disparities and engage in a dialogue to reach a consensus on the
final code. This process represents a significant time commitment.

To handle the "diversity" conflict, our participants (4/8) anticipate that AI can play
a crucial role in automatically detecting variations in codes assigned by different coders
to the same text. This would prompt them to continuously reassess their coding choices
in real-time throughout the coding process. As described by P7, "I think the collaboration
is a matter of recommending what other collaborators have already done...for instance, one
sentence, ‘oh the chatbot did not understand me.’ Then my code is ‘chatbot is stupid’, and
the code of another coder is ‘chatbot has insufficient data’. AI may detect this difference [in real
time]." (P7, Master’s student with 3 years of QA experience).

Moreover, P7 further explained that this conflict detection can take place during the
coding process, fostering timely discussion among coders and eliminating the necessity
to recall the meaning of their own codes or engage in manual one-by-one comparisons
after coding. As a result, they would only need to allocate a lower amount of time to
resolve discrepancies. This is particularly true when confronting with code "divergence":
"Then the difference may be detected. AI says, ‘So what’s the difference? Why did you choose a

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

34

different code? If you choose this code, can you give a reason why you choose this code?’ Then
I tell the other coder to come back, ‘guys. Let us discuss’ (P7, Master’s student with 3 years of
QA experience).

4.2.3 Study Limitation

It is important to acknowledge that our findings may have limitations. One main
limitation is the background of our participants, as all but one (P2) are coming from
a technology-oriented background, as indicated in Table 4.1. This could potentially
impact our findings, as their projects often involve mixed methods and practices that
may be influenced by their technological perspectives rather than perspectives and
methods rooted in social science or psychology. Our study also includes participants
with varying experiences with CQA (experts and non-experts). Our goal here was to
encompass a range of perspectives and experiences, allowing us to address both the
learning issues associated with applying CQA and the inherent issues that arise in its
implementation.

4.2.4 Discussion

In practical applications, similar CQA steps are employed by our participants with
slightly different forms, but the majority of practitioners primarily adhere to the six
CQA steps proposed by Richards et al. (Richards and Hemphill, 2018). Regarding
the anticipated stages of AI integration, our findings support the conclusions drawn
in the previous study conducted by Feuston et al. (Feuston and Brubaker, 2021), that
AI can be effectively incorporated into the inductive coding process. However, unlike
previous research that primarily focuses on utilizing AI for pattern identification and
data interpretation at this stage, our findings demonstrate an alternative use of AI:
detecting coding conflicts between coders and facilitating collaborative interpretation
and evolution of data among them. Building upon the established CQA stages and
the anticipated integration of AI, we have designed a study task for our evaluation of
CoAIcoder consisting of three primary phases: 1) open coding, 2) codebook formation
through discussion, and 3) coding using the codebook.

Our findings also confirmed several noteworthy challenges and limitations associated
with CQA. These include the time-consuming nature of the process (Marathe and Toyama,
2018b; Rietz and Maedche, 2021), difficulties in achieving consensus among coders (Cornish,
Gillespie, and Zittoun, 2013; Zade et al., 2018; Drouhard et al., 2017; J. A. Jiang et al.,
2021; Feuston and Brubaker, 2021), and the presence of software-related issues (Hopper
et al., 2021; J. A. Jiang et al., 2021; Feuston and Brubaker, 2021). In particular, we
have identified a new limitation related to coding bias arising from the challenges
of independent coding. This limitation is particularly observed in the current CQA

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

35

software that facilitates real-time collaboration and coding on a shared document among
coders. For instance, in platforms like Google Docs and Atlas.ti Web, users have visibility
into each other’s codes while co-coding. This visibility negatively impacts their willingness
to use CQA software as it introduces a potential bias in the coding process.

In an effort to mitigate this limitation, we propose a solution that involves leveraging
AI as an intermediary between the two coders. Instead of directly revealing each
other’s codes, our system retrieves and analyzes the coded data from both coders in
real time. Incorporating the distinct perspectives of each coder, our AI system generates
code suggestions that serve as indirect indicators of coding differences, which facilitate
awareness of differences among the coders. This awareness encourages them to reconsider
and reflect upon their own codes during the coding process, rather than solely during
post-coding discussions. By doing this, we aim to minimize bias in the existing coding
process when using traditional real-time collaboration software such as Google Docs,
Atlas.ti Web, and others.

4.3 CoAIcoder: System Design

Based on the insights from the interviews, we have proceeded to design and implement
a platform that harnesses the power of AI to facilitate the CQA process.

4.3.1 Design Considerations

1. Independence and convenience: To keep both independence and convenience (D2),
each coder is assigned a separate web page with the same data, but allows access
to others’ coding results by simply clicking a link rather than navigating through
the cumbersome process of exporting and importing that current non-web software
necessitates (Marathe and Toyama, 2018b).

2. Fast learning curve: To mask the complexity of AI and flatten the learning curve
(D3), our system is designed to emulate familiar platforms like Google Docs, specifically
its "comment" function. This design enables the addition and removal of codes in a
way that users can readily comprehend and navigate. Moreover, the web page or
coding interface allows data selection at various granularity levels for code addition,
similar to existing commercial QA software.

3. List of code suggestions: Our approach to collecting coding history and generating
code suggestions for coders has the potential to yield significant time savings and
reduce manual effort (D1). In accordance with Rietz et al. (Rietz and Maedche, 2021),
our approach includes providing multiple AI suggestions, each accompanied by a
confidence level. This aims to bring attention to the inherent uncertainty of codes

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

36

and curtails the potential risk of thoughtlessly adopting these suggestions (N.-c.
Chen et al., 2016; J. A. Jiang et al., 2021; N.-C. Chen et al., 2018).

4. User autonomy: Code suggestions are revealed only upon user request, emulating
the natural coding process. This fosters active thinking before viewing suggestions,
minimizing the risk of being unintentionally guided in unwanted directions (J. A.
Jiang et al., 2021) by direct exposure to others’ codes (D2). This is beneficial as it
encourages independent thinking, a tool to combat groupthink (Janis, 2008).

5. Collaboration: The coding histories of both coders are comparatively analyzed and
subsequently input into an AI classification model. This model then generates a
range of AI suggestions for coders upon request (S1). It not only provides a reference
point to users based on their own coding history but also integrates their partner’s
history. Through this design, our goal is to foster awareness of disparities among
coders, thus enhancing their understanding and reflection of the data. This becomes
particularly beneficial when addressing coding styles or logic conflicts (Akpınar,
Erol, and Aydoğdu, 2009) within a group.

6. Usage in inductive coding: Beyond the system, instead of enforcing a rigid, predefined
codebook that could potentially constrain coders (D4), we place importance on the
dynamic nature of the inductive coding process in the evaluation.

The specific design components of our prototype, CoAIcoder, are elaborated in the
following subsections.

4.3.2 Interface

The interface (see Figure 5.1) is built on two components: 1) Etherpad1, an open-source
collaborative text editor that supports multiple users editing text in real-time (Amiryousefi
et al., 2021; Bebermeier and Kerkhoff, 2019; Goldman, Little, and R. C. Miller, 2011), and
2) its plugin, ep_comment_pages2, which allows for adding comments beside the text. To
create a code, users select the text of significance → click on the "comment" button →
type in the code OR select from a list of AI-generated code suggestions → press "save".
The interface also provides features for coders to review the code history, re-edit, and
delete the code in case they change their minds. Additionally, the customized version
of ep_comment_pages offers code suggestion lists containing a maximum of five codes
when requested by the user. These codes are ranked by their confidence level, which
ranges from 0 to 1.

1https://etherpad.org/
2https://github.com/ether/ep_comments_page

https://etherpad.org/
https://github.com/ether/ep_comments_page

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

37

1 2 3Select text
Click on the button
to add codes

Add codes directly or select
one from the dropdown list

5

Codes are displayed beside
the text4

Click on the code to edit it or

reselect from the dropdown list

6
Click on the button to check
code editing history

FIGURE 4.1: The CoAIcoder interface. Creating a code: (1) Users select
the text of significance and (2) click the comment button to add codes.
(3) Users can add codes directly or select one from the dropdown list. (4)
The created code is shown beside the selected text. (5) Click on the code
to edit it directly or reselect codes. (6) Click on the button to check the

code editing history.

4.3.3 AI Model

The AI model harnesses the Rasa NLU framework3, to generate code suggestions upon
a user request. Previously, Rasa (Bocklisch et al., 2017; J. Cao et al., 2023) has been
deployed in the domain of HCI for handling conversations in several prototype models
(Porfirio et al., 2019). Specifically, we employ a recommended NLU pipeline from Rasa
to train an NLU classification model4. This pipeline incorporates multiple components:
SpacyNLP, SpacyTokenizer, SpacyFeaturizer, RegexFeaturizer,
LexicalSyntacticFeaturizer, two instances of CountVectorsFeaturizer, and
DIETClassifier.

Within this pipeline, the SpacyNLP language model ‘en_core_web_sm’5 is selected
for training efficiency consideration, comparing to larger pre-trained language models
utilized in the SpacyFeaturizer6. Moreover, the DIET (Dual Intent and Entity Transformer)
Classifier (Bunk et al., 2020) is selected for its capability to perform multi-class classification.
The NLU pipeline operates on a computer equipped with Ubuntu 20.04, Tensorflow

3https://rasa.com/docs/rasa/
4https://rasa.com/docs/rasa/tuning-your-model/#configuring-tensorflow
5https://spacy.io/usage/models
6It should be noted that our coding materials in the evaluation consist solely of simulated job interview

transcripts and do not encompass any specialized domain knowledge.

https://rasa.com/docs/rasa/
https://rasa.com/docs/rasa/tuning-your-model/#configuring-tensorflow

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

38

nlu:

- intent: poor_service

 examples

- intent: satisfied

 examples

: |

: |

 - Mentioned to our waitress,

 but nothing came of it

 - The chef can't even cut through

 ham or hard bread (tried on all 3

 occasions), beef, shrimp again

- Should be a staple in the Northeast

 - Next time I come back to town I will

 definitely stop here for more pizza!

...

“intent_ranking”:
 {“name”: },

{“name”:

 {“name”:
 {“name”:
 {“name”:

[

]

“satisfied”, “confidence”:
 “on_point”, “confidence”:

 “good_food”, “confidence”:
 “unsatisfied”, “confidence”:
 “poor_service”, “confidence”:

0.6486
0.5467

0.4201
0.2892

0.1892

},

},

},

}

Save and process user’s codes

Train NLU model

Replace models

Request code suggestions for the
selected data

Selected data: Next time I come back to town I

will definitely stop here for more pizza!

a

b

c

d

One round lasted

10-20 seconds

FIGURE 4.2: The pipeline for training and updating the CoAIcoder
model, designed to facilitate code suggestion requests. (a) Save and
process user’s coding data: This step involves saving, retrieving, and
processing each coder’s coding data. The retrieved data is then used
to generate an nlu.yml file, which contains coded text (i.e., examples)
and codes (i.e., intent). (b) Train NLU Model: This process trains a
new model using the updated nlu.yml, which takes about six seconds
or longer, depending on the coding data size. (c) Replace models:
This process substitutes the old model with the newly trained one,
approximately requiring four seconds per model. (d) Request code
suggestions: The user requests code suggestions from the server.
Initially, CoAIcoder requests code suggestions from server1. If this fails,
the request is then rerouted to server2, thereby sustaining the impression

of continuously updated code suggestions for the user.

(2.6.1), CUDA (11.2), and an Nvidia GPU Quadro K2200 graphics card, in conjunction
with installed software like Rasa (3.0), Node.js (17.2.0), and MongoDB (5.0.4).

The AI model, trained on users’ coding histories, may not provide suggestions for
the initial few requests due to a lack of historical data. However, as the data pool
expands, it gains the capability to generate up to five code recommendations for each
request, sorted according to their respective confidence levels. The DIET Classifier
computes these confidence levels, indicating the cosine similarity score between predicted
labels and text7.

4.3.4 Training and Updating Pipeline

The training and updating pipeline is shown in Figure 4.2.

Saving and Retrieving Data

Each user’s coding data is individually stored in the database. To identify conflicts, the
codes of each coder are compared with both their own and their peers’ coding histories.
The codes are subsequently grouped and deduplicated, readying them as inputs for

7https://rasa.com/docs/rasa/components/#dietclassifier

https://rasa.com/docs/rasa/components/#dietclassifier

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

39

the NLU pipeline. For example, if two sentences are labeled with the same code, they
are grouped into one "intent" (akin to the "class" concept in Machine Learning, and
equivalent to "code" in this work) in the Rasa NLU data file, nlu.yml. If a single sentence
is coded with two distinct codes by two coders, it serves as an "example" for both
"intent" in the Rasa NLU file. If two codes convey similar meanings but have different
expressions, they are interpreted as two separate "intent" (in the current version of
CoAIcoder). It should be noted that this process may slightly vary under the four
conditions outlined in Section 4.4.

Training and Reloading NLU Models in (Near) Real Time

Firstly, the nlu.yml file is fed into the NLU pipeline for automatic training of the new
NLU model. Secondly, the trained model is promptly uploaded to the Rasa server via
HTTP API, replacing the previous model. Lastly, we configure two Rasa Open Source
servers to run on ports 5005 and 5000, respectively. These servers act as buffers for
user requests, utilizing server swapping. Users have the capability to request code
suggestions through HTTP from either of the two servers. In case CoAIcoder fails to
receive a response from one server due to the server’s ongoing model update process,
it swiftly switches to the other server as an alternative. The complete pipeline typically
requires approximately 10 to 20 seconds or longer, depending on the size of the coding
data. Users experience a seamless process without any interruptions caused by model
updates.

4.4 User Evaluation Design

We proposed four collaboration methods for using CoAIcoder (see Figure 4.4). To
ensure a fair evaluation, we focus on novice users who primarily participate in the
CQA process (see section 4.2.2) and undergo requisite coding training. Moreover, the
similar starting point of the participants facilitated a balanced evaluation of CoAIcoder
using a between-subject design. This user study has been approved by our university’s
IRB.

4.4.1 Task

We simulated a CQA task encompassing three main steps: independent and open
coding, codebook formation through discussion, and codebook application. Due to
the multiple factors involved in our study, we simplified the study by focusing on the
CQA process involving two users. To determine the optimal duration for each phase
and the overall study, we conducted a pilot test with eight participants (5 females, 3
males, mean age = 24.7).

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

40

Interviewer: How are you doing today?

Interviewee: I'm doing very well. How are you?

Interviewer: Good. So tell me about yourself.

Interviewee: I'm currently a junior at MIT. I'm studying biology. Ummm I am interested in pursuing some sort of a future in

 medicine but I don't know if necessarily like the medschool route or more the research side but you know

 having to do with patient care and drugs and things like that. So within the broader field but I'm not sure

 specifically what path yet. Interviewer: Okay great. So tell me about a time when you demonstrated leadership.

Interviewee: Umm okay. So umm the summer after my sophomore year of high school I actually went on a leadership trip.

 Um so it was through uh my summer camp and some other camps are a part of the same foundation and we

 actually went on a trip to Israel for the summer.

Interviewer: Wow okay.

Interviewee: And it was the first time I'd ever been which was very exciting um. And it was a very cool experience 'cause

 not only were they teaching a lot of leadership skills but also a lot of you know the daily activities we did like

 going for really long hikes and things just kind of brought out that innate like 'someone has to make sure

 everyone brought enough water.'

Interviewer: Right.

Interviewee: And you know make sure the group's staying together and things like that um. So that was definitely something

 that I think impacted me a lot.

FIGURE 4.3: One sample interview transcript in coding task.

We selected mock interview transcripts from an open-source dataset (Naim et al.,
2015) as the text materials to be coded in our study. This dataset covers various general
topics, including leadership, personal weaknesses, and challenging experiences, which
are familiar and accessible to most users. To ensure control over potential effects on
both the AI model and user understanding, we specifically chose three transcripts that
exhibit better clarity and coherence, each consisting of approximately 1000 words. Part
of a sample interview transcript is provided in Figure 4.3.

4.4.2 Independent Variables (IVs) and Conditions

To understand the impact of AI on human-to-human collaboration in CQA, we identified
three factors for our study:

1. AI {With, Without}: Whether or not AI (the NLU model) is applied to provide
code suggestions. This IV aims to understand whether the use of AI affects CQA
performance.

2. Synchrony {Synchronous, Asynchronous}: Whether or not two coders do coding in
real-time and simultaneously. This IV aims to understand whether CQA performance
is achieved similarly in synchronous and asynchronous modes.

3. Shared Model {With, Without}: Whether or not two coders use a shared NLU model
to request AI suggestions. The shared model can collect coding history from both
coders and be trained on it to provide code suggestions. Without a Shared model,
each coder can only get AI suggestions based on his/her own coding history. This
IV aims to understand if a shared model affects the CQA performance.

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

41

We combined these factors and removed meaningless and duplicate combinations,
resulting in four final conditions (A-D) for the collaboration (see Table 4.2). The final
conditions are shown in Figure 4.4.

TABLE 4.2: The combinations of the three factors, which are not entirely
independent of each other. For instance, the absence of AI renders
the Shared Model factor irrelevant, making conditions C7 and C8
nonsensical. Synchronous coding is only applicable in the presence of
a Shared Model, as the order in which coding occurs is inconsequential
without a shared model. Thus, certain conditions become identical due
to the absence of a shared model, namely C1 and C2, as well as C3 and

C4.

Combination C1 C2 C3 C4 C5 C6 C7 C8

AI × × ✓ ✓ ✓ ✓ × ×
Synchrony × ✓ ✓ × × ✓ × ✓
Shared Model × × × × ✓ ✓ ✓ ✓

Condition A A B B C D × ×

Condition A: Without AI, Asynchronous, not Shared Model (Traditional Coding): In
Phase 1, each coder independently applies codes to the first two interview transcripts
using distinct web pages. In Phase 2, the coders convene to establish a shared codebook.
During Phase 3, they independently apply codes to the third transcript based on the
codebook. As new codes are entered, the model undergoes automatic updates.

Condition B: With AI, Asynchronous, not Shared Model: In Phase 1, each coder independently
applies codes to the first two interview transcripts, each utilizing an individual model
on separate web pages. These two independent models are automatically trained during
the coding process, with the training data sourced from their individual code histories.
In Phase 2, the coders convene to formulate a shared codebook. During Phase 3, they
independently apply codes to the third transcript based on the codebook, with the
model undergoing automatic updates as new codes are entered.

Condition C: With AI, Asynchronous, Shared Model: In Phase 1, coder1 independently
assigns codes to the first two interview transcripts. The model is concurrently trained
and offers real-time code suggestions as the coding process unfolds. Once coder1
completes the task, coder2 commences coding on a separate web page. Initially, the
code suggestions are entered by coder1’s coding history. Over time, as coder2’s codes
are introduced, they are incorporated into the suggested codes. In Phase 2, the coders
collaborate to create a shared codebook. During Phase 3, they independently assign
codes to the third transcript using the codebook, triggering automatic updates of the
model as new codes are inputted.

Condition D: With AI, Synchronous, Shared Model: In Phase 1, both coders independently
assign codes to the first two interview transcripts, each working on a separate web
page. As the coding process progresses, CoAIcoder accesses their individual code

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

42

Phase 1 Independent and Open Coding

Phase 2 Discussing and Proposing Codebook

Phase 3 Applying Codebook

AI model

Human Coder

Condition A:

Without AI

Asynchronous

not Shared Model

Condition B:

With AI

Asynchronous

not Shared Model

Condition C:

With AI

Asynchronous

Shared Model

Condition D:

With AI

Synchronous

Shared Model

Asynchronous

Model training

FIGURE 4.4: Four Approaches to Collaboration in Qualitative Analysis.
Condition A: Without AI, Asynchronous, not Shared Model (Traditional
Coding): Both coders independently apply codes. Condition B: With AI,
Asynchronous, not Shared Model: Each coder applies codes using their
respective NLU models. Condition C: With AI, Asynchronous, Shared
Model: The coders apply codes asynchronously with a shared NLP
model. Coder1 begins the process, during which the NLP model trains
and offers real-time AI suggestions. Once Coder1 completes the task,
Coder2 commences with coding. Condition D: With AI, Synchronous,
Shared Model: The coders apply codes synchronously with a shared NLP

model.

histories and automatically trains the model 3-6 times per minute. Upon request, it
then provides code suggestions for both coders. In Phase 2, the coders collaborate to
develop a shared codebook. During Phase 3, they independently apply codes to the
third transcript using the codebook. The model is automatically updated when new
codes are inputted.

4.4.3 Participants

A total of 64 participants (41 females, 23 males), ranging from 18 to 57 years old (mean=25.3,
median=23), were recruited through our university’s email system and public channels
on Telegram targeting other universities within Singapore. All participants were native
English speakers and reported no prior experience in qualitative analysis. In accordance
with our university and national guidelines for participant reimbursement, each participant
received an hourly compensation of 10 Singapore Dollars.

4.4.4 Procedure

The final study process was structured based on the setup depicted in Figure 4.5. A
total of 64 participants were divided into 32 pairs, with each study group comprising 8

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

43

Training

before coding

Instructor Coder

CQA

Codebook
Apply

Codebook
Instructor

Phase 1 Phase 2 Phase 3
Interview

after coding

FIGURE 4.5: Study procedure. Both coders underwent training in CQA,
prior to the formal coding process. Phase 1 (Independent and Open
Coding): In this phase, both coders individually performed coding
for two interview materials, following the assigned study setup (≤20
minutes). Phase 2 (Discussion and Codebook Formation): During this
phase, the two coders engaged in discussions to collaboratively create
a structured codebook using Google Sheets (≤40 minutes). Phase 3
(Application of the Codebook): In this phase, the coders independently
applied the codes from the agreed codebook during their individual
coding sessions (≤10 minutes). At the end of each phase, participants

were required to complete a survey and interview (≈5 minutes).

pairs. The allocation of participants to the four study groups was random, corresponding
to the four conditions specified in Figure 4.4.

To ensure participants had a thorough understanding of the task, we conducted
an approximately 15-minute training session prior to the study. The training session
consisted of two key components:

1. Instruction: Participants received instruction from an instructor’s explanation that
demonstrated how to use CoAIcoder for selecting the text, adding codes in Phase 1,
creating a codebook in Phase 2, and applying it in Phase 3.

2. Training Tutorial and Q&A: Participants were shown a video explaining the principles
of qualitative coding, and they also received a written tutorial explaining the concepts
of qualitative coding, codes, subcodes, and accompanying examples. A question
and answer session was held to address any queries and ensure clarity.

Following the training session, participants engaged in the three phases as illustrated
in Figure 4.5. After the study, we also gathered demographics information and invited
participants to provide feedback through an interview regarding their experience with
the system. The interview encompassed questions about their experience using the
software, focusing on individual and collaborative coding challenges, as well as their
attitude towards CoAIcoder features. With the participants’ consent, we made audio
recordings of the post-interviews to facilitate subsequent analysis. This analysis allowed
us to gather valuable insights and perspectives on the user experience of the tasks.

In addition, we implemented the following measures to ensure the tasks were performed
effectively:

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

44

1. Time reminders: Regular reminders were provided to participants to keep them
aware of the remaining time. For example, notifications were given when there were
15 minutes left and 5 minutes left in the allotted time frame.

2. Coding quality check: We monitored their codes and selected text to address any
questions, issues, or potential misunderstandings that participants may have encountered
during the task. However, we made a conscious effort to minimally interfere with
their coding process to maintain the integrity of their work.

3. Encouragement for diverse codes: Actively encouraged participants to generate a
wide range of diverse codes during the coding process.

4.4.5 Dependent Variables (DVs)

Coding Time

This DV quantifies the time taken for each of the three phases of the study (see Figure
4.5). An approximate 90-minute time limit was enforced to regulate the study duration
for each pair. Specifically, the time allotment for each phase is as follows: Training: ≈
15 minutes; Phase 1: ≤ 20 minutes; Phase 2: ≤ 40 minutes; Phase 3: ≤ 10 minutes; Post
survey and interview: ≈ 5 minutes. This structure was established in light of our pilot
studies, during which we observed that most participants were able to satisfactorily
complete the coding task. However, the actual coding time usage may deviate from
the estimate. We assessed the actual time used in each phase for further analysis.

Inter-rater reliability (IRR)

IRR is a metric that gauges the level of consensus among multiple coders (Kurasaki,
2000). In our study, we specifically employ Cohen’s kappa (κ), a measure designed
to compute agreement between two coders (McHugh, 2012). The computation of κ

encompasses both Phase 1 and Phase 3.

Code Diversity

This DV quantifies the diversity of proposed codes, a factor that is intimately linked to
coding quality. To measure this, we count the number of unique codes—also referred to
as first-level codes—and subcodes, or second-level codes. Here, "unique" signifies that
variations of a similar meaning are counted as a single code.

Code Coverage

This DV quantifies the degree of overlap between the individual coders’ codebooks
and the merged codebook, at both the first and second coding levels. This applies to

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

45

the initial codebook from Phase 1 and the users’ proposed codebook in Phase 2. The
merged codebook is iteratively developed by consolidating common codes from the 32
codebooks created during Phase 2.

The formula used for the calculation is:
Code Coverage = |Coders′ Codebook ∩Merged Codebook|

|Merged Codebook| ,
where ∩ represents the intersection of the two codebooks, and "| |" signifies the

number of codes.

4.4.6 Data Analysis

Step 1: Data Integrity and Quality Checking

Following data collection, our next step was to verify the integrity and quality of the
collected data:

1. 85% Completion Rate: Participants should complete coding for more than 85% of
the provided data within the given time8;

2. Task Correctness and Active Collaboration: We examined whether participants performed
tasks correctly and collaborated actively. Instances of extremely low code diversity,
such as using a single broad code like "Experience" to describe all examples in the
interview transcripts, were a cause for concern. This lack of diversity suggested
an inability to form a quality codebook. Additionally, pairs that were not willing
or able to engage in productive discussion, choosing instead to develop their own
individual codebooks, were noted.

Four pairs that did not meet these two criteria were omitted and replaced with new
participants to maintain the data integrity and quality.

Step 2: Generating Initial Codebooks

Phase 1 and Phase 2 represent the "pre-discussion" and "post-discussion" stages, respectively.
In the pre-discussion stage, the codes present a higher degree of variation. Following
the discussion stage, these varied codes have been deliberated and consolidated, with
differing variants merged.

In order for us to assess the IRR, code diversity and code coverage, two authors then
manually formed initial codebooks for each pair. These codebooks were specifically
designated for assessing the aforementioned DVs, and were neither shared with nor
used by the participants at any stage during the experiment. They first coordinated to

8Our time regulations were established based on pilot studies, during which most native speaker
participants were able to complete the coding tasks. This is designed to prevent the study from becoming
overly lengthy, which could lead to fatigue and a subsequent loss of focus and motivation.

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

46

merge codes of similar meaning, adhering to the following criteria and steps: codes
conveying similar meanings but expressed differently were treated as second-level
codes; subsequently, the authors collaborated to propose a corresponding first-level
code for each central meaning in the initial codebook. For example, "Introduction
of Leadership Experience", "Description of Leadership Experience",
and "Application of Leadership" serve as three second-level codes that fall under
one first-level code: Leadership. For more details, please refer to Table 4.3.

TABLE 4.3: Part of a sample of the initial codebook (Phase 1). Each
row containing second-level codes is counted as a single first-level code.
This codebook demonstrates a "Code Diversity" of 5 first-level codes

alongside 10 second-level codes.

First-level
Code

Second-level Code

Career Goal Personal introduction and future (career) goals Choosing of (academic and career) route
Not very sure about
future (career) goal

Personal Interest Personal introduction and interest area. Interest in oil fossil fuels
Leadership Introduction of leadership experience Description of leadership experience. Application of leadership
Teamwork Intro of working with team on big project
Initiative Shows initiative

TABLE 4.4: Part of a sample codebook, which is formulated from the
27-minute discussion in Phase 2 between participants P27 and P28 under
Condition D: With AI, Synchronous, Shared Model. The "First-level Code"
column represents the first-level codes generated during this discussion.
The "Second-level Code" column, on the other hand, contains codes
proposed by them in Phase 1. The "Example" column showcases selected

segments of the original text.

First-level Code Second-level Code Example

Interest and goals
Uncertain about the future

Ummm I am interested in pursuing some sort of a future in
medicine but I don’t know if necessarily like the med school
route or more the research side but you know having to do
with patient care and drugs and things like that. So within
the broader field but I’m not sure specifically what path yet
I think for me where I’m where I am at this point where I’m
deciding between sort of going the medical school route or
the research route;

Show interest in
alternative energy

I’m very interested in energy applications so um from alternative
energy to more traditional sources so basically oil and fossil fuels.
Um and kind of optimizing that industry I think there’s a lot of
potentials there so that’s where my main interest is.

Step 3: Measuring DVs

We evaluated various DVs, including Coding Time, IRR, Code Diversity, and Code Coverage,
throughout the three phases.

In terms of Coding Time, we concluded each phase as soon as coders exceeded
the time limit. All but four pairs completed the coding task within this limit – two
in Condition B: With AI, Asynchronous, not Shared Model, one in Condition C: With AI,
Asynchronous, Shared Model, and one in Condition D: With AI, Synchronous, Shared Model.

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

47

However, we still consider these four groups as "completed" due to their achievement
of a minimum 85% completion rate.

For IRR, we segmented the complete interview data into sentences → represented
codes numerically as "0" (for sentences without codes), "1", "2", "3", etc. → Cohen’s
Kappa (κ) was calculated for first-level codes in Phases 1 and 3, as Phase 2 was a
discussion session without new coding data. Due to the considerable variability, second-level
codes were excluded from IRR computation as it was infeasible.

For Code Diversity and Code Coverage, both first-level and second-level codes from
the initial codebook and the proposed codebook were incorporated into the computing
process.

Moreover, we conducted a thematic analysis (Braun and Clarke, 2006; Maguire and
Delahunt, 2017) for the interview audio transcripts, given that most data align with the
structure provided by the interview questions.

Step 4: Statistical Analysis

We conducted a non-parametric analysis on the quantitative data (Coding Time, IRR),
given concerns about the normality of the distribution of the data collected. Consequently,
Kruskal-Wallis test was employed to identify the main effect, and Mann-Whitney U-test
was used for pairwise comparisons.

4.5 Quantitative Results

4.5.1 Coding Time

Total Time

The average total time for each study group and the average used time for three phases
is shown in Figure 4.6 and 4.7. A Kruskal-Wallis test did not reveal any main effect of
the conditions on the total time to complete the study (χ2

(3) = 6.71, p = .082). In general,
Condition D: With AI, Synchronous, Shared Model was the fastest (M = 46.56 mins),
followed by Condition C: With AI, Asynchronous, Shared Model (M = 49.38mins), Condition
B: With AI, Asynchronous, not Shared Model (M = 54.69 mins) and Condition A: Without
AI, Asynchronous, not Shared Model (M = 57.31mins). The time for individual phases is
however more informative to understand the potential effect of AI on CQA performance,
therefore, we also analyzed the time for each phase.

Phase 1

We found a significant main effect of the conditions in Phase 1 (χ2
(3) = 9.03, p =

.028). A post-hoc pairwise comparison with a Mann–Whitney U-Test shows that the

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

48

57.31
54.69

49.38
46.56

0

10

20

30

40

50

60

70

Without AI
Asynchronous

not Shared Model
(A)

With AI
Asynchronous

not Shared Model
(B)

With AI
Asynchronous
Shared Model

(C)

With AI
Synchronous

Shared Model
(D)

TI
M

E
 (M

IN
S

)

Average Total Coding Time

Kruskal-Wallis Test: X² = 6.71, p =.082

FIGURE 4.6: Average Total Coding Time for Each Condition (A, B, C,
and D). Error bars show .95 confidence intervals. A Kruskal-Wallis test

showed no main effect.

19.00

31.13

7.19

18.13

29.63

6.94

16.06

27.13

6.19

17.69

23.25

5.63

0

5

10

15

20

25

30

35

40

Phase1 Phase2 Phase3

TI
M

E
 (M

IN
S

)

Average Coding Time for Three Phases

Without AI, Asynchronous, not Shared Model (A) With AI, Asynchronous, not Shared Model (B)

With AI, Asynchronous, Shared Model (C) With AI, Synchronous, Shared Model (D)

Kruskal-Wallis Test: X² = 9.03, p = .028 Kruskal-Wallis Test: X² = 6.33, p = .096 Kruskal-Wallis Test: X² = 1.59, p = .661

** *

FIGURE 4.7: Average Coding Time for Three Phases. Error bars
show .95 confidence intervals. We report the results of the individual
Kruskal-Wallis tests, and, if necessary, pairwise comparisons, where

∗ : p < .05, ∗∗ : p < .01.

coding time (M = 16.06mins) for Condition C: With AI, Asynchronous, Shared Model was
significantly faster. In particular, we found a significant difference between Condition
C: With AI, Asynchronous, Shared Model and Condition A: Without AI, Asynchronous, not
Shared Model (M = 19 mins, U = 59.0, p = .005). We also found a significant difference
between Condition C: With AI, Asynchronous, Shared Model and Condition B: With AI,
Asynchronous, not Shared Model (M = 18.13 mins, U = 51.5, p = .044). No significant
differences were found between Condition D: With AI, Synchronous, Shared Model and
other conditions.

Overall, the average coding time for Phase 1 with AI conditions was decreased by
4.6%-15.5% compared to the baseline Condition A: Without AI, Asynchronous, not Shared
Model. This also meant that AI conditions (B, C, D) resulted in a 9.0% faster coding time
on average.

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

49

Phase 2

While we observed that Condition D: With AI, Synchronous, Shared Model was the fastest
in the discussion phase, a Kruskal-Wallis test did not show any significant main effect
of the condition on time. The time used for discussion in Phase 2 was between 23.25
mins for Condition D: With AI, Synchronous, Shared Model and 31.13 mins for Condition
A: Without AI, Asynchronous, not Shared Model (see Figure 4.7).

Phase 3

Phase 3 was overall very fast, ranging from 5.63 mins for Condition D: With AI, Synchronous,
Shared Model to 7.19 mins for Condition A: Without AI, Asynchronous, not Shared Model.
We did not find any significant main effect of the conditions on time (p = .661).

4.5.2 Inter-rater Reliability

The average IRR ranges from 0.16 to 0.31 on average in Phase 1. The IRR then increased
to 0.51-0.65 by the end of Phase 3, after discussion (Phase 2) (see Figure 4.8).

0.16

0.51

0.16

0.65

0.31

0.53

0.29

0.64

0.0

0.2

0.4

0.6

0.8

1.0

Phase1 Phase3

C
oh

en
’s

 K
ap

pa
(-

1
to

 1
)

Average Inter-rater Reliability

Without AI, Asynchronous, not Shared Model (A)

With AI, Asynchronous, not Shared Model (B)

With AI, Asynchronous, Shared Model (C)

With AI, Synchronous, Shared Model (D)

Kruskal-Wallis Test: X ² = 7.84, p < .05 Kruskal-Wallis Test: X ² = 1.73, p = .631

* *

FIGURE 4.8: Average Inter-coder Reliability after Phase 1 and after Phase
3. Error bars show .95 confidence intervals. We report the results of the
individual Kruskal-Wallis tests, and, if necessary, pairwise comparisons,

where ∗ : p < .05, ∗∗ : p < .01.

Phase 1

A Kruskal-Wallis test shows that there is a significant main effect on the IRR from
the four conditions in Phase 1 (χ2

(3) = 7.85, p = .049). Post-hoc pairwise comparisons
showed that IRR scores are a bit higher for AI conditions with Shared Model: IRR in
Condition A: Without AI, Asynchronous, not Shared Model was significantly lower than
Condition D: With AI, Synchronous, Shared Model (U = 9.0, p = .015). IRR in Condition B:

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

50

With AI, Asynchronous, not Shared Model was significantly lower compared to Condition
D: With AI, Synchronous, Shared Model (U = 13.0, p = .049).

Phase 3

We did not observe any main effect between the four conditions for the IRR, ranging
from 0.51 in Condition A: Without AI, Asynchronous, not Shared Model to 0.65 in Condition
B: With AI, Asynchronous, not Shared Model (p = .631).

4.5.3 Code and Subcode Diversity

The terms, code (i.e., first-level code) and subcode (i.e., second-level code), are as
defined as per section 4.4.6 and 4.4.6. The code and subcode diversity results are
summarized in Figure 4.9. Our focus will be primarily on Phase 1 and Phase 2. We
have opted not to include Phase 3 in our discussion, given that it employs the same
codes and subcodes as Phase 2, thus having similar diversity.

14.88

6.00

14.00

7.88
9.88

8.00

10.50

6.13

0
2
4
6
8

10
12
14
16
18
20

Phase1 Phase2

A
ve

ra
ge

 N
um

be
r o

f U
ni

qu
e

C
od

es

Average Code Diversity
Without AI, Asynchronous, not Shared Model (A)

With AI, Asynchronous, not Shared Model (B)

With AI, Asynchronous, Shared Model (C)

With AI, Synchronous, Shared Model (D)

Kruskal-Wallis Test: X ² = 7.98, p =.046 Kruskal-Wallis Test: X ² = 1.67, p =.643
*

30.25

13.00

24.88

14.00
17.25

11.50

21.50

13.63

0

5

10

15

20

25

30

35

40

Phase1 Phase2A
ve

ra
ge

 N
um

be
r o

f U
ni

qu
e

S
ub

co
de

s

Average Subcode Diversity
Without AI, Asynchronous, not Shared Model (A)

With AI, Asynchronous, not Shared Model (B)

With AI, Asynchronous, Shared Model (C)

With AI, Synchronous, Shared Model (D)

Kruskal-Wallis Test: X ² =6.61, p =.085 Kruskal-Wallis Test: X ² =1.25 p =.741

FIGURE 4.9: Average Code and Subcode Diversities in Phase 1 and Phase
2. Error bars show .95 confidence intervals. A Kruskal-Wallis test is
conducted for the main effect in each phase. Pairwise comparison is
performed using Mann–Whitney U-Test with a two-sided alternative,

where ∗ : p < .05, ∗∗ : p < .01.

Phase 1

A Kruskal-Wallis test shows a significant main effect of the condition on code diversity
in Phase 1 (χ2

(3) = 7.98, p = .046). Pairwise comparisons show that the observed
diversity was lower for conditions with AI and Shared model: the code diversity for
Condition C: With AI, Asynchronous, Shared Model (M = 9.88 unique codes) was significantly

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

51

lower than for Condition A: Without AI, Asynchronous, not Shared Model (M = 14.88,
U = 54.0, p = .023).

Subcode diversity did not seem to be impacted by our four conditions in Phase 1
(χ2

(3) = 6.61, p = .085). However, it has an average number of unique subcodes ranging
from 17.25 in Condition C: With AI, Asynchronous, Shared Model to 30.25 in Condition A:
Without AI, Asynchronous, not Shared Model.

Phase 2

A Kruskal-Wallis test shows that there was no main effect in terms of Code Diversity
after Phase 2 (χ2

(3) = 1.67, p = .64). The number of items decreased compared to Phase
1, with the average ranging from 6.00 (Condition A: Without AI, Asynchronous, not Shared
Model) to 8.00 (Condition C: With AI, Asynchronous, Shared Model). This lack of main
effect was also visible for subcode diversity (χ2

(3) = 1.25, p = .74) with the number of
subcodes being between 11.5 items (Condition C: With AI, Asynchronous, Shared Model)
and 14.00 items (Condition B: With AI, Asynchronous, not Shared Model).

4.5.4 Code and Subcode Coverage

We report and summarize the average code and subcode coverage in Figure 4.10.

Phase 1

We found that no main effect for code coverage between the four conditions in Phase
1 (χ2

(3) = 4.79, p = .19), where the coverage of code ranged from 0.75 (Condition C:
With AI, Asynchronous, Shared Model) to 0.86 (Condition A: Without AI, Asynchronous, not
Shared Model).

Phase 2

Similarly, no main effect was found after Phase 2 (χ2
(3) = 1.78, p = .62) with coverage

ranging from 0.70 (Condition C: With AI, Asynchronous, Shared Model) to 0.80 (Condition
D: With AI, Synchronous, Shared Model).

4.6 Triangulation with Qualitative Results

In summary, our quantitative results reveal nuanced disparities among our four conditions
with respect to time duration, IRR, and code diversity in Phase 1. However, no significant
differences were discerned within Condition A: Without AI, Asynchronous, not Shared
Model and Condition B: With AI, Asynchronous, not Shared Model, or Condition C: With AI,
Asynchronous, Shared Model and Condition D: With AI, Synchronous, Shared Model. Most

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

52

0.86
0.77

0.86
0.800.75 0.70

0.77 0.78

0.0

0.2

0.4

0.6

0.8

1.0

Phase1 Phase2

C
ov

er
ag

e
(0

 to
 1

)

Average Code Coverage
Without AI, Asynchronous, not Shared Model (A)

With AI, Asynchronous, not Shared Model (B)

With AI, Asynchronous, Shared Model (C)

With AI, Synchronous, Shared Model (D)

0.41

0.24
0.32 0.33

0.22
0.270.30 0.30

0.0

0.2

0.4

0.6

0.8

1.0

Phase1 Phase2

C
ov

er
ag

e
(0

 to
 1

)

Average Subcode Coverage

Kruskal-Wallis Test: X ² =3.35, p =.341Kruskal-Wallis Test: X ² =4.79, p =.188 Kruskal-Wallis Test: X ² =1.78, p =.619 Kruskal-Wallis Test: X ² =1.11, p =.775

Without AI, Asynchronous, not Shared Model (A)

With AI, Asynchronous, not Shared Model (B)

With AI, Asynchronous, Shared Model (C)

With AI, Synchronous, Shared Model (D)

FIGURE 4.10: Average Coverage of Code and Subcode in Phase 1 and
Phase 2. Error bars show .95 confidence intervals. We report the results

of the individual Kruskal-Wallis tests.

observed variations, therefore, were between Condition A: Without AI, Asynchronous, not
Shared Model and Condition B: With AI, Asynchronous, not Shared Model on one side, and
Condition C: With AI, Asynchronous, Shared Model and Condition D: With AI, Synchronous,
Shared Model on the other.

Despite the modest size of the statistically significant differences observed in our
study, it is worth noting that even such small results can have meaningful implications
(Altman and Bland, 1995; Hackshaw, 2008). The trends we discerned lead us to a
two-fold set of primary findings: First, we found that in the context of our proposed
CQA conditions, AI without a shared model may not improve coding efficiency as
effectively as the shared model. Second, we found that combining AI with a shared
model could potentially accelerate coding speed and achieve a higher level of initial
IRR. However, this advantage came with a slight reduction in code diversity during the
code development phase. To confirm our primary findings, we employ a triangulation
method that combines qualitative results, as discussed in the following.

4.6.1 Lower Initial Coding Time

While our results indicate that only Condition C: With AI, Asynchronous, Shared Model
significantly decreased the coding time in Phase 1, with Condition D: With AI, Synchronous,
Shared Model not reaching statistical significance, there is a suggestive trend that participants
under conditions with both AI and a shared model tend to engage in less discussion
time in Phase 2 (refer to Figure 4.7) and less coding time overall (refer to Figure 4.6).
The observed decrease in Shared Model conditions ranges from 13.8% to 18.9% for total
time, 6.9% to 15.5% for Phase 1, and 12.8% to 25.3% for Phase 2. However, this trend

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

53

does not extend to Phase 3. To validate these preliminary observations, a follow-up
study with larger datasets would be beneficial in the future.

Additionally, it is important to note that due to study constraints, we had to enforce
a time limit of 20 minutes for Phase 1, leading to the discontinuation of the coding
task for four pairs who did not complete it within the regulated time (see section 4.4.6).
Consequently, the differences observed between Condition A: Without AI, Asynchronous,
not Shared Model, which closely adhered to the 20-minute limit in Phase 1 (refer to Figure
4.6), and the other conditions may actually be more substantial in real-world usage.
However, further data would be required to support this conclusion.

4.6.2 Higher Initial IRR

Although we only detected a higher IRR for Condition D: With AI, Synchronous, Shared
Model in comparison to Condition A: Without AI, Asynchronous, not Shared Model and
Condition B: With AI, Asynchronous, not Shared Model, a significant upward trend emerged
in the average IRR across Shared Model conditions, demonstrating an increase from
81.3% to 93.8% (refer to Figure 4.8).

This suggests the potential for a greater IRR in Phase 1 when utilizing AI & Shared
Model, which could stem from the participants’ capacity to utilize the Shared Model for
reflection and code adjustments upon exposure to various code suggestions, primarily
drawn from their counterparts. This early involvement in the "negotiation and merging"
process enables participants to reach an agreement and shared understanding sooner
in the initial coding stages.

Our observation is partially confirmed by the qualitative results. P33 from Condition
C: With AI, Asynchronous, Shared Model noted, "After I wrote (a code), I would check if
the suggested codes are better.". Similarly, in Condition D: With AI, Synchronous, Shared
Model, P31 mentioned, "It could have another word for ‘introduction’. For example, maybe my
partner will say ‘intro’. But if you want to formalize things, then we realized that introduction
is a more formalized code.".

4.6.3 Lower Diversity

While the shared model enabled participants to save time and reach code convergence
in the early phases of coding, it also resulted in lower code diversity. On average, in
comparison to our baseline condition Condition A: Without AI, Asynchronous, not Shared
Model (Mean = 14.88), the total number of unique codes decreased by 5.00 (in Condition
C: With AI, Asynchronous, Shared Model) and 4.33 (in Condition D: With AI, Synchronous,
Shared Model). This reduction can be attributed to the higher overall agreement among
participants, which naturally limits the variety of codes used. Additionally, the usage
of suggested codes, shared among participants in Condition C: With AI, Asynchronous,

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

54

Shared Model and Condition D: With AI, Synchronous, Shared Model, further contributes
to the decrease in code diversity.

4.6.4 Effect of Synchrony

It is interesting to note that the synchrony of coding (Synchronous or Asynchronous)
did not seem to have an impact on CQA performance, as we did not observe any
significant differences between Condition C: With AI, Asynchronous, Shared Model and
Condition D: With AI, Synchronous, Shared Model. Nevertheless, we did observe effects
from the qualitative results.

First, we noticed that some coders in Condition C: With AI, Asynchronous, Shared
Model tended to rely more on the AI code suggestions, rather than proposing their
own codes. This behavior might be attributed to their reliance on a model extensively
trained using the first coder’s codes. As a result, participants expressed concerns about
potential bias introduced by the shared model and expressed worry that the code
diversity and coverage in the open coding process (Phase 1) would be reduced. "Bias
was a bit problematic. Because when you’re given suggestions that you might not need, but it
shows it has a high confidence level, then subconsciously, I guess you might try to incorporate it
[...] which you might not have done otherwise." (P48 in Condition C: With AI, Asynchronous,
Shared Model). This concern is substantiated by our quantitative results.

Second, differences in coding speed could contribute to a similar effect, as slower
coders may end up reusing code generated by faster, synchronous coders. As one
participant explained, "We both generated a common knowledge base... but because I was
doing slower, then a suggestion coming out with a 0.9 confidence score, which is the code I
would have written. That’s why I feel biased." (P30 in Condition D: With AI, Synchronous,
Shared Model).

It is crucial to note that the coders were not aware that the suggestions originated
from the first coder’s input, believing them to be AI-generated until it was revealed in
the post-interview. We believe that leveraging the shared model is valuable; however,
if the second coder was made aware of whether a suggestion originated from the AI or
a previous coder, could alter their level of reliance on the suggestions and potentially
impact the dependency between both coders.

4.6.5 Positive Feedback from Shared Model Conditions

While the use of a Shared AI model may involve a trade-off in terms of coding speed,
IRR, and code diversity, it is notable that the conditions utilizing Shared AI models
resulted in more positive experiences among participants. In both Condition C: With AI,
Asynchronous, Shared Model and Condition D: With AI, Synchronous, Shared Model, 5 out
of 8 pairs reported a smooth and swift coding process with the system.

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

55

Participants elaborated on the reasons behind their positive experiences. For instance,
the shared model streamlined the coding process by enabling participants to reuse their
own or their partners’ previous codes. As one participant noted, "Because it already
has the options that I have entered before, it’s faster if I want to add the same code in other
paragraphs. I don’t have to keep referring to what I wrote above." (P37 in Condition C: With
AI, Asynchronous, Shared Model). They expressed appreciation for the shared model’s
ability to offer timely suggestions, which substantially assisted them in refining their
code expressions. This sentiment was aptly encapsulated by one participant who remarked,
"It sometimes has a better phrase or better word. You can just take from that." (P34 in Condition
D: With AI, Synchronous, Shared Model).

The shared model also facilitated coders in aligning their understanding with their
partner’s during the coding process. As one participant explained, "For me, yes, coding
efficiency was improved. Because my partner was coding just the main points... When I was
doing my own coding, I could see [these] main points. It definitely helped me understand
what was going on." (P17 in Condition D: With AI, Synchronous, Shared Model). This
can also prompt them to compare their own viewpoints against a broader range of
perspectives. P48 in Condition C: With AI, Asynchronous, Shared Model noted, "So [AI]
suggested weakness [as a code], I thought it could be society. I want to say this kind of
inconsistency is just a difference of opinion [of what] terms or labels here."

In contrast, the majority of participants expressed a neutral or negative attitude
towards coding efficiency, while only one participant (P63) from Condition B: With AI,
Asynchronous, not Shared Model perceived an improvement.

4.6.6 Similarity of Codebooks across Conditions

Overall, our main DVs allow us to understand how AI might help with coding. However,
it can still be hard to find out whether the results across our four conditions are similar
or at least comparable. We thus identify the 7 most common first-level codes in the
formed codebook for each condition (see Appendix Table A.1). Overall, the themes
are rather similar (despite a slightly different ranking), suggesting that the results are
consistent across the four conditions. Most code categories appeared in all four codebooks,
e.g. introduction, leadership, weakness, hiring.

4.7 Discussion

4.7.1 Trade-off: Coding Efficiency vs. Coding Quality

Overall, the introduction of AI with Shared Model has the potential to streamline the
early coding process, saving time and fostering early consensus on codes, as reflected
by higher initial IRR. However, this comes at the cost of reduced initial code diversity.

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

56

We recognize the inherent trade-off between (Coding Time & IRR) and Diversity —
essentially, the balance between coding efficiency and coding quality — as a persistent
characteristic of the early stages of CQA, particularly when seeking shared AI mediator
assistance.

AI & Shared Model Fosters Strong Discussions

Previously, we referenced Zade et al., who identified two types of disagreements that
can occur during coding: ‘diversity’ (varying interpretations of a single core idea) and
‘divergence’ (distinct core ideas) (Zade et al., 2018).

For the former, we found users often favor consistency in coding outcomes across
coders over excessive diversity. In this context, the shared model proves beneficial,
aiding coders in refining their phrasing. For the latter, we noted that while coders
appreciated AI code suggestions—rooted in their collective coding history—they still
actively formulated their own codes, especially when facing divergent disagreements.

This process encourages real-time comparison and validation, prompting coders to
critically reassess their coding decisions against alternate perspectives. When incorporated
into subsequent discussions, these reflective insights enrich the overall dialogue. As a
result, AI can serve a crucial role as a facilitator in human-to-human collaboration,
stimulating more substantive and engaging discussions.

Potential Pitfalls

While AI and Shared Model bring considerable benefits, it is crucial not to overlook the
following two potential challenges.

Reduced Diversity. We argue that code diversity, by introducing varied perspectives,
plays a crucial role in enhancing coding quality within the CQA process (Richards and
Hemphill, 2018; Anderson, Guerreiro, and J. Smith, 2016). It is crucial to ensure that
coding practices do not excessively compromise coding quality or diversity. Otherwise,
users may resort to traditional tools that ensure coding quality through extensive discussions
between collaborators on a line-by-line and code-by-code basis. Therefore, we call
for the need for further research in this area to address this challenge. For instance,
one approach is to enable the system to generate synonyms or keywords of potential
codes as references for coders, apart from the original code suggestions (Marathe and
Toyama, 2018b). Moreover, allowing the system to easily highlight nuanced differences
and compare text selections, by linking back to prior data with simple clicks, can deepen
coders’ understanding and thus yield more insightful codes.

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

57

Over-reliance. Moreover, we must acknowledge the potential risk of users becoming
overly dependent on the system. This tendency can be exacerbated when users aim to
increase their speed, encounter challenges in formulating code names, or face discrepancies
in coding speed among coders. Such over-reliance could potentially decrease the propensity
to seek different opinions, leading users to only choose from system suggestions, particularly
during asynchronous coding. This also raises concerns about a potential loss of diversity
and nuance in coding, especially in loosely-defined coding tasks where multiple iterations
may be necessary to reach consensus on a codebook. In future studies, measures to
curb over-reliance on the AI system could include providing explanations for code
suggestions (Vasconcelos et al., 2023), interface warnings to indicate excessive system
use, or even temporary system disabling if over-reliance is detected.

4.7.2 Is Shared Model best for CQA? Considering Different Application
Scenarios

In light of the points discussed in the previous subsections, we do not argue that AI &
Shared Model is the best solution for CQA.

Supporting Different Contexts with Different Independence Level.

Our evaluation revealed that the four collaboration methods effectively simulated four
distinct levels of independence, each potentially desirable in different real-life scenarios.
In conditions without AI or Shared Model (Condition A, B), coders maintained the
highest level of independence, with no communication during the code development
phase. Conversely, under conditions with AI & Shared Model (Condition C, D), coders
demonstrated a lower level of independence—indirectly connected and communicating
through the AI mediator.

The evaluation of different levels of independence yielded varying results. A higher
level of independence was found to generate greater code diversity with lower efficiency,
while a lower level of independence resulted in lower code diversity with higher code
efficiency. Align with this, the feedback obtained from participants during the interview
(see section 4.2.2) indicates that they usually compromise some independence in favor
of enhanced coding efficiency when time constraints are present.

The observation, coupled with our formative interviews, has enabled us to discern
two distinct scenarios in the context of CQA: efficiency-oriented and creativity-oriented.

In the former, researchers facing time constraints or requiring both qualitative and
quantitative results may be inclined to sacrifice some rigidity in coding for improved
coding efficiency. As a result, they might prefer alternative methods, such as using
pre-defined themes in analysis, over strict adherence to the Grounded Theory process,
which is often seen as more inductive, requiring meticulous, line-by-line open coding

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

58

(Maguire and Delahunt, 2017). Therefore, when integrating AI to facilitate human-to-human
collaboration, some level of communication between coders may be beneficial and
acceptable. However, efficiency should not be prioritized to the point of jeopardizing
code diversity or undermining the primary goal of CQA—to glean multiple perspectives.

For the latter, in research domains that might heavily rely on creativity, perspective,
and critical thinking (e.g., Psychology, Anthropology), it is crucial to minimize external
influences and maintain a high degree of independent thought and self-autonomy. For
instance, researchers may choose to use separate coding models that generate code
suggestions based on each coder’s individual coding history.

In summary, we underscore the need to consider varying levels of independence
across diverse contexts, as this can impact the trade-off and balance among different
coding outcomes when leveraging an AI mediator to facilitate human-to-human collaboration
within the realm of CQA.

Support Different User Groups with AI & Shared Model

We believe that CoAIcoder has the potential to be beneficial for various user groups.
In our study, we involved participants who had limited experience with qualitative
coding. Based on the feedback from interviewees, this particular user group frequently
engages in CQA analysis and codebook creation (see section 4.2.2).

CoAIcoder for the Learning purpose of Novices During our study, participants expressed
a positive reception towards the code suggestions, particularly in the initial stages of
the coding process. One participant mentioned, "Firstly, I did not know what to put
because I don’t know what is required" (P49 in Condition C: With AI, Asynchronous, Shared
Model). Another participant stated, "Quite useful, because at least I can start. That’s how
I’m supposed to do it" (P36 in Condition C: With AI, Asynchronous, Shared Model). These
responses indicate that participants found the system helpful in overcoming the initial
challenges of understanding coding requirements and getting started with the analysis.

Moreover, participants reported that the system was easy to use. As one participant
remarked, "It seems pretty easy to use" (P63). By providing a user-friendly interface,
our system addresses the learning curve issues highlighted in prior research (J. A.
Jiang et al., 2021; Yan, McCracken, and Crowston, 2014) associated with conventional
qualitative QA software like nViVo and Atlas.ti. This suggests potential to mitigate
users’ reliance on traditional collaboration software like Google Docs and Sheets, which
are not specifically designed for qualitative analysis.

CoAIcoder for Expert Users We contend that expert coders might derive benefits
from our system, as it has the potential to save their time and facilitate higher levels

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

59

of agreement through AI mediation. We also speculate that expert users may not rely
on the system heavily, thereby mitigating the risk of over-reliance. However, further
evaluation with expert users is necessary to substantiate this hypothesis.

4.8 Design Implications

Beyond insights into human-to-human collaboration via AI mediation, we also identify
design implications for human-AI collaboration, such as the impact of coding granularity
and the cultivation of trust between humans and AI.

4.8.1 Impact of Coding Granularity on Human-AI collaboration

Coding granularity includes the unit-of-analysis (UoA) and code specificity. The UoA
delineates the level at which text annotations are made, for example, on a flexible or
sentence level (Rietz and Maedche, 2021). Code specificity refers to the varying degrees
of detail in a code, for instance, it can range from a broad code to a more specific one. In
our evaluation, we did not regulate the UoA and code specificity and left the selection
of text and codes open. This approach mirrors real-world coding processes, where
individuals often apply codes at various units and code specificity (Rietz and Maedche,
2021). We noted two significant implications arising from this setup.

Establishing Optimal Coding Granularity for both AI and Human Coders

We first observed a significant variation in coders’ interpretation and application of
codes, from broad generalities, which often lack informational depth, to more specific
interpretations that may not apply universally. A participant clarified, "So let’s say for
‘leadership’ code, right? We should write like ‘introduction to leadership’ and then it can be
applied across the 200 (transcripts). If you write like ‘introduction to event planning’, we
can’t use it, as not everybody organized [event]." (P17 in Condition D: With AI, Synchronous,
Shared Model).

AI generates suggestions by learning patterns and structures in the data it has been
trained on. They are more likely to generalize based on the most prominent features
or patterns in the data instead of understanding context, nuance, and the complexity
of human language and emotions, as noted by a participant in Jiang et al.’s study
(J. A. Jiang et al., 2021). This limitation can have significant implications for how
coders approach their work. If coders become aware that AI systems are more likely
to suggest or recognize broad codes, they might deliberately write broader codes to
ensure compatibility with AI suggestions, which could lead to oversimplification of
the data and possibly missing out on nuanced or intricate details. It also highlights
the necessity for human involvement in AI-assisted qualitative coding. The human

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

60

coder’s role becomes critical in guiding the AI, providing the nuance, context, and
deeper understanding that the AI may lack. Strategic considerations include the level
of specificity in code selection and the possibility of optimizing codes that can be efficiently
processed by both AI and human understanding. The goal is to design an AI-assisted
system that is not completely dependent on AI but instead integrates the strengths of
both AI and human coders to overcome the identified limitations.

Impact of Coding Granularity on IRR Calculation

Another challenge we encountered was the evaluation of quality. This issue becomes
particularly problematic when calculating IRR, as precise numeric codes on similar
levels of the text are usually required for its calculations. When coders choose codes
or text of varying levels, it can lead to ambiguity (Ceccato et al., 2004) as it becomes
challenging to determine if they’ve assigned identical codes to a particular unit. To
address this challenge, a potential strategy is to regulate coding units or pre-discuss
"soft rules" for agreed-upon levels of units (e.g., sentences, paragraphs) before conducting
coding (Kurasaki, 2000; O’Connor and Joffe, 2020). However, to maintain user flexibility
in our study, we opted to map the assigned codes to sentence level after coding for
IRR calculation. Future research can explore the combination of these two methods to
maximize the advantages they bring.

Impact of Coding Granularity on Stability of Suggestions

We noted occasional system instability due to frequent retraining, which could change
suggestion order or composition and disrupt established interaction patterns. One
participant noted, "When I selected one sentence of this paragraph, the code is there. But when
I select the whole paragraph, the [same] code is not there [any more]." (P47 in Condition C: With
AI, Asynchronous, Shared Model). This instability presents challenges for coders’ user
experience who predictively interact with the system and rely on prediction stability
(H. Liu et al., 2022). However, users primarily using the system for decision-making
aid and consistently choosing from the suggestion list might have minimal reliance
on prediction stability. For them, minor alterations might not pose significant issues, as
long as the system continues to provide relevant and accurate suggestions. Furthermore,
a user’s dependence on prediction stability could also evolve with familiarity with the
system. Novice users might rely heavily on the system’s suggestions stability, while
experienced users might develop their own interaction strategies. From the model’s
perspective, prediction stability depends on the extent of data changes between training
iterations. If the newly added data closely mirrors the pre-existing data, the model’s
predictions could remain stable. Conversely, if the new data significantly diverges,
predictions might undergo noticeable changes. Employing strategies like incremental

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

61

learning, where the model learns from new data without forgetting previous knowledge,
could potentially maintain stable predictions (Giraud-Carrier, 2000).

4.8.2 Trust and User Expectations

While we strive for maximum accuracy in AI systems, it is important to acknowledge
that achieving perfection, especially in tasks involving subjective data, is challenging
(N.-C. Chen et al., 2018; J. A. Jiang et al., 2021).

Calibrating Users’ Expectation Before Coding

Previous research has demonstrated that unrealistic user expectations can lead to reduced
user satisfaction with AI systems (Kocielnik, Amershi, and Bennett, 2019; Grimes,
Schuetzler, and Giboney, 2021; Ashktorab, Liao, et al., 2020; Cheng et al., 2019). In
our evaluation, participants exhibited a notable initial expectation regarding the AI’s
capability to provide suggestions. If the system failed to meet their expectations, participants
resorted to manually entering their own codes. Additionally, the occasional inaccuracies
in the AI’s suggestions brought confusion and might damage their confidence in the AI.
"For one sentence I thought it was "interest". The number [for the other suggestion] was like
0.9 but for "interest" was like 0.00 something. I was a bit confused." (P62 in Condition B: With
AI, Asynchronous, not Shared Model).

Additionally, participants expressed a desire for more timely results when requesting
code suggestions. However, our current "retrieve-train-predict" process takes at least
10 more seconds, even when utilizing a GPU. This delay in providing suggestions may
have impacted participants’ willingness to utilize the AI suggestions. "One difficulty is
the code I put in takes a while to come out when I want to use it again for another passage."
(P38 in Condition C: With AI, Asynchronous, Shared Model).

In future work, in addition to enhancing the accuracy and stability of the system,
managing users’ expectations will be crucial. One approach could involve calibrating
users’ expectations by providing information about the system’s capabilities, expected
accuracy, and the possibility of errors. Furthermore, making the suggestions more
explainable and interpretable could provide users with insights into the underlying
reasoning, potentially easing users’ doubts, distrust, and frustration (Knowles et al.,
2015; Golafshani, 2003; Lubars and Tan, 2019; Liao, Gruen, and S. Miller, 2020).

Can Imperfect Suggestions Help?

Research suggests that even imperfect AI can still provide valuable assistance to users
(Kocielnik, Amershi, and Bennett, 2019). In our case, when AI suggestions are in
conflict with the assumptions made by coders, it indicates the possibility of either

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

62

partially incorrect or completely incorrect suggestions. When AI suggestions partially
align with users’ thoughts, they can select the suggested codes and implement minor
adjustments. Therefore, these suggestions can still assist users in making code decisions,
and this valuable user input can contribute to improving the model’s performance in
subsequent training. When AI suggestions are completely not matched, users have the
option to bypass the suggestions and manually enter their own codes.

However, some coders may not be aware of the aforementioned strategy. When
they encounter imperfect suggestions, their trust in the AI system can diminish. "I
guess I did not use [the AI suggestions] much, because the words I needed wouldn’t not be
suggested. But I guess if one suggestion is a bit close to what you are thinking, it’s enough.
But if you want to put your exact thoughts, then I guess doing it manually would be better."
(P48 in Condition C: With AI, Asynchronous, Shared Model). Sometimes, a relevant code
suggestion may not be among the top five suggestions but could instead appear within
the top ten. Therefore, it would be beneficial for users to have access to a longer list of
codes upon request. While this feature may not be frequently utilized, it would grant
users more control over the system. "I think for myself, [the system] wasn’t that helpful...
because there’s only five in the drop-down list. Even if I want something that is exactly the
same words, but it’s not in the top five recommended, I cannot get it. There isn’t a scroll down
or something." (P32 in Condition C: With AI, Asynchronous, Shared Model).

Overall, it is important to communicate to coders about the capabilities of the AI
system and how to effectively respond to imperfect code suggestions. Such information
can enhance coders’ understanding of AI system’s capabilities and limitations, allowing
them to fully leverage it.

4.9 Limitations and Future Work

This work has limitations. First, our research primarily involved novices participating
in the system evaluation. There were several reasons for this choice: 1) based on our
initial interviews, training novice users and integrating them into the CQA team is
a common practice (see section 4.2.2); 2) in our investigation of collaboration factors
within the CQA context (i.e., With/Without AI, Synchrony, Shared Model/No Shared
Model), designing a between-subject design was necessary. Ensuring a similar baseline
experience among participants was also essential to maintain fairness across conditions.
In the study, we took measures to promote accurate task completion: a) we provided
thorough CQA training to all participants in each session, aiming to equip them with
the skills necessary to efficiently carry out the tasks; b) we monitored the participants’
coding results and the quality of their work closely during the task to minimize disruption
to their coding process (see section 4.4.4); c) after collecting data, we carried out quality
checks to verify the reliability and completeness of the results (see section 4.4.6).

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

63

However, despite these measures, it’s important to acknowledge that our findings
might differ from those obtained from seasoned CQA experts. For example, in some
isolated cases, we observed a slight over-reliance on the system by novices. However,
even when employing novices, the need for discussion and collaboration persists. Therefore,
experts could also derive benefits from the time-saving capabilities of our system. Future
research should broaden the user base to include expert-expert and expert-novice pairs,
as well as native-nonnative speakers, to explore other potential advantages of the various
collaboration diagrams.

Another limitation of our study is the lack of substantial statistical significance,
which can potentially be traced back to multiple factors. One key aspect is the inherent
complexity of human collaboration in the context of CQA tasks, which is multifaceted
and nuanced, carries considerable significance. For example, the diversity of reactions
among coders to AI-suggested codes, or the differences in the pace at which individual
coders learn and adapt to the coding process. Additionally, coders might have widely
different coding strategies that influence their coding speed and the quality of their
output. Furthermore, while we opted for a potentially optimal number of AI suggestions
for the CoAIcoder’s design in this iteration, the influence of the number of suggestions
on user behaviors is an important design aspect to consider. It could also be interesting
to examine the impact of revealing AI suggestions either before or after users select the
text.

Another consideration lies in system-related factors, including the frequency of
training updates and delays in achieving stable model accuracy, which are certainly
significant. It is worth noting that improving model performance on subjective annotation
continues to be a key challenge in fields like NLP (Davani, M. Díaz, and Prabhakaran,
2022) and HCI (N.-C. Chen et al., 2018), and this aspect remains under-explored in
the context of CQA. In future work, it would be advantageous to incorporate data
augmentation technologies or other NLP pipelines to enhance model performance.
Moreover, the promising potential of advanced LLMs, e.g., GPT-49, which demonstrate
exceptional capabilities in understanding and generating text (Z. Zhang et al., 2023),
should not be overlooked. They could be harnessed to facilitate AI-assisted qualitative
coding10 as well as CQA (Gao, Guo, Lim, et al., 2023).

These individual differences and system-related factors, though subtle, can cumulatively
exert a profound impact on collaborative coding dynamics and the detection of the final
significant difference. However, they remain largely unexplored. While we recognize
their significance, our main emphasis in this work lies in unearthing the possibilities
and influence of AI mediation on human collaborative dynamics within a CQA context.
We strongly recommend further research in this field, given the significant role of CQA

9https://openai.com/research/gpt-4
10Announced on 28th March 2023: https://atlasti.com/ai-coding-powered-by-openai

https://openai.com/research/gpt-4
https://atlasti.com/ai-coding-powered-by-openai

Chapter 4. Examining the Effectiveness of AI-assisted Human-to-Human
Collaboration in Qualitative Analysis

64

in qualitative research and the current focus primarily on AI’s application in individual
qualitative analysis. Our goal is to pinpoint and investigate the research gap, rather
than establish a definitive or arbitrary methodology for AI-assisted CQA.

4.10 Conclusion

In this work, we delve into AI-assisted human-to-human collaboration within the context
of CQA and assess various collaboration modes between coders. To the best of our
knowledge, this marks the first attempt to investigate the role of AI in the collaboration
of qualitative coding, as previous research primarily concentrated on individual coding
with AI. In pursuit of this goal, we initially gained insights into coders’ CQA behaviors,
challenges, and potential opportunities through a series of semi-structured interviews.
Following this, we developed and implemented a prototype, CoAIcoder, designed
to provide coders with code suggestions based on their coding history. We further
introduced four collaboration methodologies and evaluated them using a between-subject
design with 64 participants (32 pairs). This led to the identification of the trade-off
between coding efficiency and coding quality, as well as the relationship between independence
level and the coding outcomes under varying CQA scenarios. We also highlighted
design implications to inspire future CQA system designs.

65

Chapter 5

Investigating the Impact of
Human-AI Interaction on User Trust
and Reliance in AI-Assisted
Qualitative Coding

5.1 Motivation

While substantial research exists in this field, a comprehensive examination of user
reliance, trustworthiness and helpfulness of AI-assisted systems remains scarce (J. A.
Jiang et al., 2021). To our knowledge, this work represents the first attempt to deeply
explore how different human-AI interaction strategies within qualitative analysis impact
the user trust and reliance for AIQCs.

User trust and reliance are fundamental factors to consider in constructing human-centric
AI systems (Bach et al., 2022; Vereschak, Bailly, and Caramiaux, 2021). Lee et al. (J. D.
Lee and See, 2004) distinguish "trust" as an "attitude" and "reliance" as a specific "behavior".
Such attitudes can shape intentions, which subsequently manifest as behaviors. While
trust is challenging to quantify directly, behavioral metrics like reliance—evident in
how often users accept or follow recommendations—can act as indirect indicators of
trust (Papenmeier, Kern, Englebienne, et al., 2022). Within the AIQCs context, trust
issues have also been identified. Jiang et al. (J. A. Jiang et al., 2021) highlight the
numerous factors that contribute to distrust between humans and AI. These include
user’s skepticism towards the AI’s capability to execute qualitative analysis reliably,
noticeable behavioral disparities between humans and AI, the absence of explanations
of AI suggestions, and so on.

Based on their work, we argue that varying human-AI interactions in qualitative
analysis, which arise from different coding strategies—a factor that has seemingly been
overlooked—pose unique challenges for users to build appropriate trust and reliance
on AI throughout the Open Coding process. Depending on the final objective, coding

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

66

approaches can vary greatly. For instance, some might opt to code entire paragraphs
with a concise code, providing a broad classification for large text segments. Conversely,
others might focus on phrases, applying lengthier codes for more detailed insights.
Despite similar processes, these strategies yield vastly different depths and scopes in
coding outcomes.

In particular, there is a cascading chain of influence—from the interaction between
humans and AI to the user trust and reliance: the 1 human-AI interaction can substantially
vary based on the 2 coding strategies employed. It influences the 3 users’ input—essentially,
the 4 training data for the AI—which consequently impacts both the 5 model’s
performance and, therefore, the 6 quality of AI suggestions. This chain of influences,
in turn, shapes 7 humans’ trust and reliance in AI systems. Consequently, our goal
is to investigate the impact of coding strategy and its associated influence chain on the
dynamics of user trust and reliance. This exploration aims to uncover enhanced design
insights for AIQCs.

5.2 Background and Related Work

5.2.1 Trust and Reliance with AIQCs

Trust encompasses a range of definitions in the literature (Vereschak, Bailly, and Caramiaux,
2021; Dzindolet et al., 2003; Mayer, Davis, and Schoorman, 1995; J. D. Lee and See,
2004). Lee (J. D. Lee and See, 2004) differentiates between "reliance" as a behavior and
"trust" as an attitude. An attitude serves as an emotional assessment of beliefs that
inform one’s intentions, which subsequently manifest in behavior. Reliance, characterized
by how frequently a user depends on or concurs with a system, serves as a behavioral
metric to assess trust and evaluate user attitudes towards system usage (Papenmeier,
Kern, Englebienne, et al., 2022; Dzindolet et al., 2003).

As trust and reliance have become a significant topic in the fields of CSCW and
HCI (BANOVIC et al., 2023; Bach et al., 2022; Vereschak, Bailly, and Caramiaux, 2021),
there is also a growing interest in exploring and establishing this element within the
AIQCs domain. In the interview conducted by Jiang et al. (J. A. Jiang et al., 2021), the
authors highlight several sources that contribute to distrust in AI. For instance, they
point out discrepancies in the "typical behavior of humans and AI", as AI offers direct
suggestions even when humans cannot provide a specific "correct" recommendation,
and AI tends to prioritize suggestions with higher probabilities rather than subtle and
nuanced insights. They also pointed out that low-precision models often require extra
human effort for corrections. Moreover, the absence of explanations from AI and skepticism
regarding AI’s capacity for creativity and serendipity frequently lead to increased distrust.
On the contrary, excessive reliance on AI might prompt researchers to defer to AI as the

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

67

ultimate authority, potentially compromising human deliberation in the decision-making
process.

Expanding on Jiang et al.’s work, we delve into trust nuances, focusing particularly
on the reliance aspect between humans and AI. We mainly assess objective behavioral
measures, such as the extent to which users accept code suggestions. In the context of
AIQCs, it’s crucial for users to strike the right balance in reliance—avoiding both under-
and over-reliance. Moreover, by emphasizing reliance, we aim to gain insights into
user interactions with AI systems perceived as less trustworthy or flawed, especially in
subjective tasks (BANOVIC et al., 2023; Kocielnik, Amershi, and Bennett, 2019; N.-C.
Chen et al., 2018; N.-c. Chen et al., 2016).

This is supplemented by subjective evaluations, like self-reported scores, to gauge
users’ trust or users’ perceived trustworthiness in a system. Trustworthiness here is
defined as "the extent to which the trustee believes that an automated system will
behave as expected" (Papenmeier, Kern, Englebienne, et al., 2022; Vereschak, Bailly,
and Caramiaux, 2021). We emphasize user perception since, in qualitative analysis,
participants typically perceive the AI’s capability to "reliably provide suggestions" as
low (J. A. Jiang et al., 2021). In addition, we also measure users’ Perceived Helpfulness,
is because it is described as "the extent to which users perceive the recommendation
as being capable of facilitating judgment or decisions" (Qin and Kong, 2015; M. Li et
al., 2013). There is a strong connection between Perceived Trustworthiness and Perceived
Helpfulness: if users find recommendations helpful, they are more likely to seek advice
from those recommendations, thereby fostering trust in the system’s capabilities. By
considering both behavior and perception, we aim to identify potential discrepancies
and foster deeper insight into users’ holistic trust in the system (Scharowski et al., 2022;
S. Cao and Huang, 2022; Brachman et al., 2022).

While current AIQCs approaches typically rely on human input for model training
and generating code suggestions, there is a lack of research examining the human-AI
interactions within the context of AIQCs. These interactions may introduce unique
challenges specific to AIQCs that can significantly influence user trust and reliance.
Certain interactions have the potential to generate higher-quality input, leading to
more accurate code suggestions and improved assistance, while others may have a
detrimental effect on these outcomes, subsequently shaping user perceptions and ultimate
reliance on the systems.

5.2.2 Human-AI Interaction within AIQCs

There has been significant interest in finding ways for end-users, rather than experts,
to interact meaningfully with machine learning systems in order to enhance system
performance and user experience (Stumpf et al., 2009; Amershi et al., 2014). Researchers

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

68

have also investigated how to refine features of machine learning systems by incorporating
human perspectives, particularly in complex qualitative content analysis scenarios (Liew
et al., 2014).

For AIQCs, AI often relies on human-generated training data, which serves as model
input. However, unlike many traditional AI tasks, the inherently subjective nature of
qualitative analysis poses a unique challenge. This challenge stems from the difficulty
of obtaining specific and consistent human inputs, such as labels and text, for AI models.
A major contributing factor to this issue is the variability in code granularity present
in human coding (Saldaña, 2021; Lindgren, Lundman, and Graneheim, 2020). This
variability may lead to inconsistencies and unreliability in the produced data, subsequently
affecting the performance and trustworthiness of AIQCs.

Text Granularity denotes the specific selections of text that are to be coded. Imagine
an Open Coding exercise where coding occurs on a word-by-word basis. In such a
scenario, the overall context of the text is lacking, making it difficult for the model
to suggest any useful codes. Consequently, coders may lose trust in the AI’s ability
and decide to stop using the system. On the other hand, performing line-by-line or
sentence-by-sentence coding (Saldaña, 2021) would provide the AI with more context.
This increased context could potentially enhance the performance of AI models (Farra
et al., 2010), thereby influencing the system’s perceived trustworthiness among users.
In this work, we have chosen to examine three different levels of text granularity:
sentence, paragraph, and selective. For the last level, users can select phrases of any
length, which more closely resembles a regular Open Coding process.

Code Granularity refers to the length and specificity of a code (Lindgren, Lundman,
and Graneheim, 2020). When a code is short, broad, and general (e.g., "experience",
"leadership"), the AI might exhibit commendable performance from a classification
perspective: the probability of AI suggestions aligning with the user-selected text is
elevated, thereby expanding the pool of potential choices within the AI’s suggestions.
Despite this, dependency on AI assistance under these circumstances is not advisable.
There’s a risk of users becoming overly dependent on it, which may undermine the
depth and diversity of qualitative analysis. On the other side, if users add excessively
lengthy or detailed codes (e.g., "he hosts lots of activities", "her pets are very cute"),
they may not serve as suitable categories for classification as they could exhibit limited
commonality for code reuse. This situation could potentially impact the performance
of the AI models. In this work, we have elected to explore three distinct levels of code
granularity: Short Codes (i.e., Concise and General Codes), Long Codes (i.e., Detailed
and Comprehensive Codes), and Mixed Codes (Natural Codes). In the case of the
latter, users may employ code lengths ranging from one to six words, more closely
mirroring a typical Open Coding process.

Both of the aforementioned scenarios could hinder the AI model from performing

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

69

as well as expected. As a result, AI could become less useful, leading users to either
under-utilize it or rely on it excessively. Hence, the granularity levels for both codes
and text selections must be carefully designed, to enhance the clarity and consistency
of the coding scheme (N.-c. Chen et al., 2016; Marathe and Toyama, 2018b; Rietz and
Maedche, 2021). We anticipate that our evaluation will distill key insights, thus aiding
in the creation of trustworthy, reliable, and beneficial AIQCs.

5.3 AIcoder: AI-assisted Qualitative Coding Tool

We used the prototype in CoAIcoder work, everything is the same except that at this
time we only want to explore the interaction between human and AI instead of two
humans and AI. So we only used one coder’s codes as training data to fine-tune the
pre-trained model. The interface of AIcoder is displayed in Figure 5.1, while the backend
structure is depicted in Figure 5.2. With AIcoder, users can conveniently highlight any
segment of text and assign a specific code. Following the coding, the selected text
snippets and their corresponding codes are utilized to fine-tune a model based on
their inputs. Ultimately, the user can highlight another piece of text to receive several
recommendations from the model.

5.4 Study Design

We conducted a user study to assess the impact of various coding strategies on user
trust and reliance in AIcoder. To establish different levels of granularity described in
section 5.2.2, we set parameters for the length of the text selection and the associated
code. Users were then asked to undertake qualitative coding at the sentence level,
paragraph level, or with more flexible selection within a paragraph. Additionally, they
were requested to summarize their codes in either a concise manner (short phrases of
no more than three words), a more extended format (phrases containing four to six
words), or in a freer style (phrases of mixed lengths ranging from one to six words).
These specifications were derived from pilot studies conducted prior to the formal
study.

Ultimately, we evaluated the model’s performance (RQ1 in section 5.4.7); the Decision
Time and Coding Behavior (RQ2 in section 5.4.8); the Selecting Rate and user reliance
examination (RQ3 in section 5.4.9); participants’ self-reported trust in Perceived Trustworthiness
and Perceived Helpfulness of the system (RQ4 in section 5.4.10); as well as their subjective
preferences (RQ5 in section 5.4.11).

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

70

Click the comment button
to create a code

Select text of significance,
including phrases, sentences,
paragraphs, etc.

1

Type new code OR select code
suggestions provided by AI (each
code also shows its confidence level

Code is showed beside
the selected text

Edit codes

2

5

4

3

FIGURE 5.1: AIcoder Interface. The above figure shows a user was doing
coding using Mixed Codes. The user can add codes by 1) selecting the text
of significance or interest, including phrases, sentences or paragraphs,
etc.; 2) clicking the comment button to create a code; 3) typing new code
or selecting code suggestions suggested by AI. Each code also shows the
confidence level, ranging between 0 and 1; 4) code is shown beside the

selected text; 5) edit codes.

5.4.1 Study Task

Dataset

We selected the reviews at random from the publicly accessible Yelp reviews dataset1

for our open coding task. We chose Yelp reviews due to two main reasons. First, the
content of reviews is a form of text that most people are familiar with, thus facilitating
the coding process for participants without imposing significant difficulties. Second,
reviews often come in short paragraphs, increasing the likelihood that a code assigned
to one paragraph could also apply to another.

Pilot Test

In order to ascertain that our participants could complete the open coding tasks within
a reasonable timeframe of 1 to 1.5 hours, we conducted a pilot study involving 6
graduate students with proficient English skills. This exercise revealed that a coding

1https://www.yelp.com/dataset/documentation/main

https://www.yelp.com/dataset/documentation/main

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

71

1. Select text
of interest

Code suggestions list
(Max number: 10)

{'code0': 'good preparation: 0.3076',
'code1': 'good food: 0.2685',
'code2': 'good food, price location: 0.2396',
'code3': 'mediocre preparation: 0.0487',
'code4': 'good atmosphere: 0.0280'}

7. Selected text and added code

are used as tra
ining data for th

e

continuous model re
training

Train NLU model

8.Replace Model

Server

User Side

2.Requests
 th

e se
rve

r

to cla
ssi

fy t
he se

lecte
d te

xt

System Side

4. Return code
suggestion
list to the user

1) codes
2) selected text

6. Data is saved

3. Classification

5. Type in a code or
select a code from
suggestion list

FIGURE 5.2: Process of recommendation generation. User side: 1) the
user selects the text and clicks on "comment" button; the system 2)
automatically requests suggestions from the model server, 3) conducts
a classification process, 4) returns a list containing up to 10 code
suggestions for the user to either select from or refer to, and 5) the
user decides to either create their own codes or select one from the list.
System Side: 6) the codes and labeled text are subsequently stored for
future use, 7) the selected text and added codes are reused as training
data to fine-tune a new model, and 8) the updated model is subsequently

deployed onto the server.

This is a so-called restaurant that doesn't do anything a restaurant should do except preparing food, the rest is left to the guest.
Do you want water? Get up and go across the yard to get it. If you want a drink, go downstairs and pay in cash. Want to sit in dirty
deckchairs in a dirty garden, enjoy yourself. The waiters are a little bit helpful as they bring you our food after you go to the
window and pay cash for it. Kind of like New Orleans Hamburger and Seafood, but dirty and with live music (which is nice). It's a
once in a lifetime experience for me... just once.

3rd in 8 paragraphs

FIGURE 5.3: A sample paragraph for the open coding tasks, extracted
and preprocessed from the Yelp reviews dataset.

task comprising eight paragraphs (with an average of 86.8 words per paragraph) was
the most suitable length for our study.

Our pilot study also uncovered several typographical and grammatical errors, along
with colloquial references that could potentially hinder participants’ understanding. To
remedy this, we thoroughly cleaned the text before using it for our open coding task.
Figure 5.3 depicts one of the revised reviews used in the formal coding tasks.

5.4.2 Independent Variables and Conditions

We implemented a split-plot design (Lazar, Feng, and Hochheiser, 2017b) to investigate
the effects of two facets of qualitative coding granularity: Text Granularity (i.e., unit of
analysis or length of text selection) and Code Granularity (i.e., length of code in words).
The first variable comprises three levels: Sentence, Paragraph, and Selective. The second
variable also includes three levels: Short Codes (1-3 words), Long Codes (4-6 words), and

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

72

Mixed Codes (1-6 words). Consequently, this study encompasses a total of 3 × 3 = 9

conditions (see Table 5.1 and Figure 5.4).

TABLE 5.1: Nine conditions corresponding to Text Granularity (i.e., unit
of analysis or length of text selection) and Code Granularity (i.e., length

of code in words).

Text Granularity (text length)

Sentence (S) Paragraph (P) Selective (E)

Code
Granularity

(code length)

Short Codes
(1-3 words) (S)

SS SP SE

Long Codes
(4-6 words) (L)

LS LP LE

Mixed Codes
(1-6 words) (M)

MS MP ME

“Tremendous service (Big shout out to Douglas) that complemented the delicious food. Pretty
expensive establishment (40-50$ avg for your main course), but it definitely backs that up with an
atmosphere that's comparable with any of the top tier restaurants across the country.”

Sentence-by-sentence coding

Short
Codes

Long
Codes

Good service

Good serviceand food

“Tremendous service (Big shout out to Douglas) that complemented the delicious food. Pretty
expensive establishment (40-50$ avg for your main course), but it definitely backs that up with an
atmosphere that's comparable with any of the top tier restaurants across the country.”

Short
Codes
Long
Codes

Good service
Comparable with top tier
restaurant

“Tremendous service (Big shout out to Douglas) that complemented the delicious food. Pretty
expensive establishment (40-50$ avg for your main course), but it definitely backs that up with an
atmosphere that's comparable with any of the top tier restaurants across the country.”

Short
Codes
Long
Codes

Pretty expensive

Pretty expensive for main
course

Mix
Codes

Mix
Codes

Mix
Codes

Paragraph-by-paragraph coding

Selective coding

FIGURE 5.4: Nine Coding Methods.

We opted for a mixed-design approach (i.e., a split-plot design) to ensure the experiment
duration remained manageable (approximately 1 hour). We designated Code Granularity
as a between-subject variable to avoid affecting the participants’ coding process, particularly
their decision-making regarding labels.

Meanwhile, Text Granularity was counterbalanced according to appearance order
across various levels, utilizing a Latin Square method (Lazar, Feng, and Hochheiser,
2017b). For each of the three levels of Text Granularity, participants were asked to
peruse eight selected texts and carry out an open coding task. The impact of differing
text selection lengths can be evaluated by comparing conditions within the same row
of Table 5.1. Conversely, the effect of varying code lengths can be ascertained by
comparing conditions within the same column.

5.4.3 Participants

We conducted our study with 30 participants (12 males and 18 females, mean age =
21.9 years old). We based our participant selection on the following criteria: 1) age

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

73

of 18 or above, 2) proficient English reading and writing skills, and 3) enrollment in
or completion of an undergraduate programme. All participants, being novices in
qualitative coding, received appropriate coding training from us prior to the formal
study. Each participant received compensation for their time equivalent to 7.25 USD
per hour, which aligns with the standard rate approved by our institution’s IRB. Additionally,
for the follow-up study conducted in section 5.4.9, we recruited 6 participants (3 females,
mean age = 26.7 years old) with the same requirements.

5.4.4 Procedure

We partitioned the 30 participants into three groups of 10, each group assigned to
propose either short, long, or mixed codes. Independently of their group, all participants
underwent the Sentence, Paragraph, and Selective conditions. They were instructed to
code each sentence, with the option to skip any that were devoid of meaning (Sentence);
to assign one code to each paragraph (Paragraph); and to code text selections of any
length within a paragraph, ranging from phrases to individual or multiple sentences
(Selective).

Upon signing the consent form, participants were initially briefed on Open Coding.
This was followed by a 15 to 20-minute training session, introducing them to qualitative
coding. Subsequently, they began coding tasks under their assigned conditions. They
were also given specific research questions to guide their coding process. Primarily,
these queries necessitate participants to discern the customers’ opinions and attitudes
regarding the store or restaurant presented in the coding material.

To gain insights into users’ attitudes towards AI, we implemented a think-aloud
protocol during the study. This approach facilitated the observation of participants’
coding processes and ensured the tasks were performed correctly. After each study,
participants completed a survey and were encouraged to share their reasoning behind
the given choices in the survey with the facilitator, and to compare the conditions they
experienced. Additionally, we conducted a semi-structured interview at the end of the
study to encourage participants to reflect on their experiences.

5.4.5 Dependent Variables

The study aims to investigate the extent to which users trust, rely on, and find the AI
system helpful.

Model Performance

To assess the influence of the coding strategies on the model’s performance, we employed
evaluation metrics from recommendation systems (Tamm, Damdinov, and Vasilev,

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

74

2021; Metrics n.d.): we consider Precision@k and Mean Average Precision (MAP@k),
where k signifies the number of suggestions. To simplify the evaluation, we limit
ourselves to the top five suggestions, denoted as k = 5.

To establish a "ground truth" for metric evaluation, we utilized the majority of codes
stemming from participants’ coding outcomes. These predominant codes were then
evaluated and ultimately finalized iteratively by two authors, contrasting them with
the original text selections. Subsequently, we assigned labels to the AI recommendations
generated during participants’ open coding process as "1" for relevant and "0" for irrelevant.
If the recommendation’s meaning from the system corresponds with the "ground truth",
it is deemed relevant; otherwise, it is marked as irrelevant. Considering that the original
AI-generated suggestions close to 10,000, manually labeling each one is nearly impractical.
Hence, two authors independently reviewed 100 AI suggestions using strict criteria for
data labeling. Only code suggestions that were directly relevant to the target code or
ground truth were deemed relevant. Any discrepancies or ambiguous codes identified
were discussed between the two authors. Once they achieved a Cohen’s kappa score
greater than 0.6, indicating moderate agreement, one of the authors proceeded to label
approximately 30% (≈3,000) of the AI suggestions outcomes for each participant’s codes.

Specifically, Precision@k(u) = |rel(u)∩reck(u)|
k is calculated as the proportion of relevant

recommendations among the top k recommendations provided by the system; Recall@k(u) =
|rel(u)∩reck(u)|

|rel(u)| is defined as the proportion of relevant recommendations within the top-k
recommendations out of the total number of relevant recommendations. Likewise,
mean AP@k(u) = 1

|reck(u)|
∑

i∈reck(u) I(i ∈ rel(u))Precision@rank(u, i) is calculated
as the average of the Average Precision across all users and requests. This metric
incorporates the order information, considering the relevance of items (indicated by
I(i ∈ rel(u))) at their respective ranks (denoted by rank(u, i))2.

Decision Time

The decision time refers to the duration that users spend on making a decision for each
selection, starting from the moment they begin selecting until they finish entering the
code. This metric can also serve as an indirect indicator of the difficulty of a coding
task (Wright and Ayton, 1988).

Coding Behavior

To enable a thorough comparison across our nine conditions, we examined users’ coding
behaviors from multiple perspectives, including the number of selections made, the

2u is a user identificator; i is an item identificator; reck(u) is a recommendation list for user containing
top-k recommended items; rel(u) is a list of relevant items for user u from the test set; rank(u, i) is a
position of item i in recommendation list reck(u); I[] is an indicator function.

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

75

length of selections (in words), the length of codes (in words), and the number of
unique codes created. The Coding Behavior provides insights into coding strategies
employed by participants.

Selecting Rate

User reliance (Vorm, 2018; Papenmeier, Kern, Englebienne, et al., 2022) reflects users’
willingness to accept system suggestions. We measure users’ reliance (Dzindolet et al.,
2003; Ashktorab, Desmond, et al., 2021) by Selecting Rate = Total number of codes selected by users

Total number of codes made .
The Selecting Rate represents the probability of users selecting a suggested code.

Perceived Trustworthiness and Perceived Helpfulness

We assess users’ Perceived Trustworthiness and Perceived Helpfulness towards the code
suggestions using a five-point Likert scale: 1 = Do not trust at all, 2 = Do not trust,
3 = Neutral, 4 = Relatively trust, 5 = High level of trust. We adapted our questions
from prior research that examined users’ trust levels towards classifiers and prediction
results (Papenmeier, Kern, Hienert, et al., 2022; Rechkemmer and Yin, 2022; Yin, Wortman
Vaughan, and Wallach, 2019), including:

1. How much do you trust the Confidence Score and Rank of the suggestions?

2. How much do you trust the system’s ability to include your expected code (Containing
Ability)?

3. How helpful do you think the suggestions were?

To promote a better understanding of these questions, we verbally illustrate the
concepts of the confidence score and ranks to participants as they complete the survey.
Furthermore, we provided explicit explanations for each question’s intent to participants.
For example, we clarified to participants that we were asking whether they believed the
confidence score accurately reflected the suggestions’ quality; whether they viewed the
suggestions’ ranking as reliable; and whether they thought the system was capable of
producing their expected codes.

Subjective Preferences

We obtained explicit consent from all participants to audio record the entire study.
The recorded audio was subsequently transcribed into text format to facilitate further
analysis.

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

76

5.4.6 Data Analysis

Quantitative analysis

We performed statistical analysis (Norman, 2010) using a mixed two-way ANOVA3:
we used repeated measures on Text Granularity, taking into account the random effect
of user. To account for the repeated measures design, we applied appropriate sphericity
corrections (Greenhouse-Geisser) when needed, which adjusted both the reported p-values
and degrees of freedom when necessary. Post-hoc comparisons were conducted using
pairwise t-tests with Bonferroni correction to account for multiple comparisons.

Qualitative analysis

We employed thematic analysis (Braun and Clarke, 2006) to derive themes and groupings
for qualitative data. Upon becoming acquainted with the data and establishing initial
codes, we organized the transcripts into cohesive themes that aligned with the content.
We reviewed the transcripts and audio recordings to extract pertinent quotes corresponding
to each identified theme.

5.4.7 RQ1: Impact on Model Performance

The performance of the model is reported in Table 5.2.
The results suggest that Code Granularity does not exert a significant influence on

Precision@5, MAP@5 metrics, but a main effect on Recall@5 (F2,27 = 3.79, p = .035).
Specifically, Mixed Codes (M = 0.31) exhibits a lower Recall@5 compared to Short Codes
(M = 0.48, p = .022).

Text Granularity significantly impact Precision@5, Recall@5, and MAP@5 metrics
(p < .05 for all). For MAP@5, we noted a trend where models performed consistently
worse under Sentence (M = 0.36) than Selective (M = 0.46, p < .01) and Paragraph
(M = 0.47, p < .01). Similarly, for Recall@5, models performed consistently worse
under Sentence (M = 0.38) than Selective (M = 0.47, p < .025). Our findings also
suggest no interactions between Code Granularity and Text Granularity.

Summary

The lower Recall@k for Mixed Codes compared to Short Codes suggested that less relevant
code suggestions are likely to be extracted from possible candidate sets because of
the uncontrolled length of codes. Moreover, the model, when tasked on Paragraph,
demonstrably surpasses Sentence. The performance boost may be attributed to the
verbose text in the Paragraph configuration, which provides a richer dataset for the

3https://pingouin-stats.org/generated/pingouin.mixed_anova.html

https://pingouin-stats.org/generated/pingouin.mixed_anova.html

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

77

TABLE 5.2: The model’s performance. All values fall within the range of
0 to 1.

Factor1:
Code Granularity

Factor2:
Text Granularity

Precision@k
(M ± S.D.)

Recall@k
(M ± S.D.)

MAP@k
(M ± S.D.)

Short Codes
(1-3 words)

Sentence 0.19 ± 0.07 0.53 ± 0.19 0.38 ± 0.11
Paragraph 0.21 ± 0.10 0.38 ± 0.18 0.46 ± 0.24
Selective 0.20 ± 0.06 0.53 ± 0.20 0.46 ± 0.08

Long Codes
(4-6 words)

Sentence 0.21 ± 0.04 0.34 ± 0.20 0.38 ± 0.12
Paragraph 0.26 ± 0.11 0.47 ± 0.19 0.53 ± 0.17
Selective 0.28 ± 0.09 0.61 ± 0.30 0.50 ± 0.19

Mixed Codes
(1-6 words)

Sentence 0.17 ± 0.04 0.28 ± 0.07 0.32 ± 0.06
Paragraph 0.22 ± 0.08 0.38 ± 0.17 0.43 ± 0.16
Selective 0.21 ± 0.07 0.28 ± 0.07 0.41 ± 0.13

classifier. However, shorter text selections might inherently convey less information,
thereby possibly reducing the probability of a match between users’ codes and the
selected text. In contrast, longer selections could offer more context, potentially leading
to more accurate model classifications. However, this remains speculative, and we seek
further validation through users’ subjective feedback.

5.4.8 RQ2: Impact on Decision Time and Coding Behavior

Coding Behavior

The Coding Behavior results are outlined in Table 5.3. Not all comparisons bear logical
consistency—for instance, comparing the length of selections in Paragraph and Sentence
conditions. Further intriguing observations surface when we examine (1) the number
and length of selections for Mixed Codes, Short Codes, and Long Codes under the Selective
condition and (2) the difference in code length between Mixed Codes vs. Short Codes and
Mixed Codes vs. Long Codes. Specifically:

(1) Under Selective condition, the length of selections in Long Codes (M = 29.22)
significantly surpasses that in Mixed Codes (M = 12.07, p < .001) while no difference
between Mixed Codes (M = 12.17) and Short Codes (M = 12.07). The number of
selections shows no significant difference.

(2) In the length of code, Long Codes (M = 5.05) is longer than Mixed Codes (M =

3.37, p < .001), and Mixed Codes (M = 3.37) is longer than Short Codes (M = 2.19, p <

.001).
(3) In terms of code length, there is no significant difference observed between the

codes in Selective (M = 3.13) and codes Sentence (M = 3.19).

Decision Time

Decision Times across all conditions are shown in Figure 5.5.

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

78

TABLE 5.3: Summary of Coding Behavior. Among nine conditions,
Mixed Codes × Selective is the baseline, having little to no code constraints

and thus closely representing open coding.

Factor1: Code
Granularity

Factor2: Text
Granularity

Coding Behavior
Number of
Selectiona

(M±S.D.)

Length of
Selectionb

(M±S.D.)

Length of
Code

(M±S.D.)

Short Codes
(1-3 words)

Sentence – – 2.06 ± 0.54
Paragraph – – 2.51 ± 0.59
Selective 29.70 ± 14.09 12.17 ± 12.37 2.00 ± 0.54

Long Codes
(4-6 words)

Sentence – – 4.88 ± 0.92
Paragraph – – 5.34 ± 0.72
Selective 15.90 ± 7.37 29.22 ± 20.71 4.93 ± 0.93

Mixed Codes
(1-6 words)

Sentence – – 2.63 ± 1.26
Paragraph – – 5.03 ± 1.08

Selective (baseline) 28.30 ± 12.51 12.07 ± 9.71 2.46 ± 1.26
a The number of selections for Paragraph is consistently 8, while for Sentence is consistently around 35.
b The selection length for Paragraph consistently averages around 87 words, while for Sentence, it
typically averages around 14.6 words.

FIGURE 5.5: Average Decision Time (Seconds). The time needed to make
a decision for each selection. Final results for Selecting Rate and Decision

Time. Error bars represent .95 confidence intervals.

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

79

Code Granularity. A significant main effect of Code Granularity on Decision Time was
detected (F(2,24) = 11.13, p < .001). Participants tended to spend more time formulating
Long Codes (M = 52.2s) compared to Short Codes (M = 34.0s, p = .014) and Mixed Codes
(M = 31.2s, p < .01).

Text Granularity. A significant main effect of Text Granularity on Decision Time was
observed (F(2,48) = 10.13, p < .001). Generally, participants required more time to label
Paragraph (M = 52.2s) in comparison to Selective (M = 35.6s, p = .023) and Sentence
(M = 31.6s, p < .001).

Interactions. No significant interaction was detected (p = .97).

Summary

Decision Time and Task Difficulty Participants found creating Long Codes more challenging
due to a four-word minimum, unlike the one-word minimum for Short Codes and Mixed
Codes. Similarly, Decision Time increased with Text Granularity, with longer coding
periods for Paragraph, implying greater task difficulty and time commitment for individual
coding selection tasks.

Sentence ≈ Selective; Mixed Codes ≈ Short Codes Despite certain disparities, participants
demonstrated similar coding behavior across both the Selective and Sentence conditions
for code length, as well as between Mixed Codes and Short Codes for number and length
of selections.

Correlation between Length of Codes and Text Crafting longer code names often
necessitated larger text selections, a fact further corroborated by the text length between
Long Codes and Short Codes under Selective condition, while the number of selections
significantly decreased in longer codes conditions, while the number of selections in
Short Codes was twice as many.

5.4.9 RQ3: Impact on User Reliance

In this section we examined the users’ reliance on AI, we are specifically concerned
about the 1) relationship between AI model performance and users’ reliance. 2) whether
there is a risk of overreliance that could potentially impact coding quality.

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

80

Selecting Rate

The Selecting Rate are visualized in Figure 5.6. Our statistical evaluation reveals that
Text Granularity has a significant influence on Selecting Rate (F(2,54) = 15.838, p < .001),
whereas Code Granularity does not demonstrate a main effect. Pairwise differences are
detected (all p < .05): Selective registered the highest Selecting Rate (with a mean of
M = 32% across conditions), followed by Sentence (with a mean of M = 26%), and
lastly Paragraph (with a mean of M = 16%). Moreover, a notable interaction between
Text Granularity and Code Granularity was detected (F(4,54) = 2.766, p = .036).

Solely selecting: when users only select codes from AI suggestions. The statistical
analysis indicates that Code Granularity significantly influences "solely" selecting rate
(F2,27 = 3.887, p = .032). Similarly, Text Granularity has a main effect on the "solely"
selecting rate (F2,54 = 22.117, p < .001). Moreover, both Code Granularity and Text
Granularity exhibit an interaction effect (F4,54 = 3.472, p = .014). We observed distinct
pairwise differences, all at p < .001: Users exhibited selection behavior more frequently
with Sentence and Selective than with Paragraph; there was no distinguishable difference
between Sentence and Selective. When employing Short Codes for coding, these tendencies
became even more pronounced.

Selecting and modifying: when users select and modify codes from AI suggestions.
The statistical evaluation demonstrates that Code Granularity has a notable impact on
the "selecting and modifying rate" (F2,27 = 3.375, p = .049), while Text Granularity does
not. When comparing pairs, it’s evident that users tend to first select and subsequently
modify the code more frequently under the Long Codes condition compared to the Short
Codes condition (p = .046).

Therefore, user reliance on AI is more pronounced in the Selective condition, where
users are tasked with selecting only pertinent text portions—a situation that closely
resembles real-world coding scenarios. On the contrary, the Paragraph condition had
the lowest Selecting Rate, particularly with Short Codes, likely due to the difficulty of
summarizing and coding an entire paragraph with a 3-word limit. This demanding
task caused both AI and participants to struggle. On the other hand, the length of
the codes influences users’ coding and modification habits. Specifically, longer codes
often serve as an "indirect" reference, prompting users to first select and then adjust
the codes, which might have enhanced user’s subjective feelings on these conditions as
reported in RQ 5.4.10 and RQ 5.4.11.

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

81

Se
nt
en
ce

Pa
rag
rap
h

Se
nt
en
ce

Se
nt
en
ce

Pa
rag
rap
h

Pa
rag
rap
h

Se
lec
tiv
e

Se
lec
tiv
e

Se
lec
tiv
e

FIGURE 5.6: Selecting Rate (0-1). Users’ receptiveness to code suggestions
produced by the system. Final results for Selecting Rate and Decision Time.

Error bars represent .95 confidence intervals.

Over-reliance concerns

Given some high Selecting Rate in conditions like Short Codes × Sentence, Mixed Codes
× Selective, and Long Codes × Paragraph, we are concerned that some coders may have
overly relied on the system under these conditions, thereby affecting the final coding
quality. This concern is elevated when observing the specific Selecting Rate for each
coder: 6 out of 30 participants demonstrated a Selecting Rate above 50% in Selective
conditions. When reviewing the Selecting Rate of these participants under the Sentence
conditions, a similar trend emerged.

Comparing the Coding Results With and Without AI Assistance

Supplementary Study In order to validate our concern, we carried out a supplementary
study. This involved 6 more participants performing coding tasks without AI assistance
under conditions suspected to foster over-reliance. The procedure is identical to that of
our primary study.

The experimental setup encompasses three previously mentioned conditions that
demonstrated the highest Selecting Rate. Due to the analogous behavior observed between
users for Selective and Sentence, Mixed Codes and Short Codes (see section 5.4.8), we
anticipate that an analysis of the Short Codes × Sentence and Mixed Codes × Selective
condition would probably yield results comparable to those from the Short Codes ×
Selective condition.

Results We decided to perform a qualitative comparison between the final quality of
the coding results with and without AI assistance. The results are detailed in Table 5.4.

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

82

We observed that codes in Short Codes × Sentence with AI assistance seem to have
fewer code variances than coding without AI, even though their primary category is
similar. For instance, ‘bad food’ is a code with AI assistance, while codes such as ‘cold,
old fries’ or ‘dislike burger set’ serve as analogs of ‘bad food’ without AI assistance,
albeit with more variance. When assisted by AI, users might be presented with a
‘bad food’ suggestion, which they may subsequently adopt instead of proposing other
expressions.

The Short Codes × Sentence condition appears ‘acceptable’, with participants exhibiting
a relatively commendable Selecting Rate. Likewise, the Mixed Codes × Selective condition
reveals a similar change in code results. We might anticipate similar decreases in
other conditions like Short Codes × Selective. Interestingly, the Long Codes × Paragraph
condition seems to demonstrate a relative consistency, regardless of the presence or
absence of AI.

Indeed, the decrease in code variance, to a certain extent, could be perceived as
beneficial since it might result in more focused coding and reduce the effort needed
to group variances. However, it risks yielding coding outcomes that appear less
substantial and somewhat superficial. This could potentially influence the discussion
and creation of a codebook in subsequent stages of real qualitative analysis.

5.4.10 RQ4: Impact on Perceived Trustworthiness and Helpfulness

Perceived Trustworthiness

Results of users’ self-reported trustworthiness are depicted in Table 5.5 and Figure 5.7.
Although we anticipated variations in users’ perceptions of trustworthiness across different
conditions, we observed no significant main effects on Perceived Trustworthiness in any
of the measures. Overall, users held neutral attitudes (score ≈ 3) towards the system’s
components and its ability to suggest their desired codes. However, the most intriguing
findings predominantly stem from the Perceived Helpfulness.

Perceived Helpfulness

Code Granularity A significant main effect of Code Granularity on Perceived Helpfulness
were observed (F(2,27) = 9.789, p < .001). The system’s suggestions were deemed
more helpful by users in the Long Codes condition (M = 3.97) than those in the Mixed
Codes condition (M = 2.53, p < .001). Likewise, in the Short Codes condition, the
system was perceived as more helpful (M = 3.20) than in the Mixed Codes condition
(M = 2.53, p = .049).

Text Granularity No significant main effect on Perceived Helpfulness was discerned.

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

83

TABLE 5.4: Comparison of typical coding results for each condition (LP
= Long Codes × Paragraph, SS = Short Codes × Sentence, and ME = Mixed
Codes × Selective), both with and without the application of AI. Each cell
presents codes derived from a typical user’s results under the specified
condition. While the "with AI" condition may yield codes with a higher
selection rate, they may lack nuanced detail. In contrast, the "without

AI" condition tends to generate more detailed codes.

With AI Without AI

LP

Food Quality:
cheap good dessert bad breakfast decoration
overall bad food try another venue
good Thai food very happy meal
lazy service decent food won’t return

Service and Cleanliness:
self-service dirty restaurant won’t visit again
good food nice people recommended visit
lazy service decent food won’t return

Food Quality:
cheap good location dessert bad breakfast
good server ok pizza bad burger
nice people good food have games
tasty coconut soup and pad thai
good promotion friendly people tasty food
lazy service good food average pricing

Service and Cleanliness:
poor service dirty live music avail
clean good service tasty reasonable price
lazy service good food average pricing

SS

Food Quality:
cheap food
bad food
ok food
good food
expensive food
quality dropped

Service:
good service
bad service
ok service

Ambiance/Environment:
bad decoration
good music
good entertainment
dirty

Others:
good offer

Food Quality:
feels cheap
good food, service
neutral food
bad food
dislike burger set
cold, old fries
pricey pizza
okay pizza
good food people
coconut soup pad thai
same menu tried
liked coconut soup
coconut soup creamy
good pad thai
good peanuts, noodles
good chicken
good hot wings
lots of sauce
delicious sushi, affordable
affordable sushi
freshness and variety

Ambiance/Atmosphere:
jaded decor
new orleans vibe
quiet, competent chef

Service:
poor service recovery (2)
decent server
lack of service
water not served
decent service
friendly staff
order mixup

Recommendations and Reviews:
positive recommendation (2)
mixed review

Customer Relationship:
better previous experience
lost customer (mentioned twice)
purchase inconvenient
recent customer
overall satisfied
potentially lost customer

Others:
not clean
beer with brother
played nintendo
prefer fewer herbs
near hotel, convenient
promo good
returning for pizza
large party, hibachi

ME

Food Quality:
food tastes bad
food tastes normal
tasty
fresh food with huge variety
good place food and people

Service:
poor service
good service
cheap but poor food and service

Pricing:
expensive
worth
worth and tasty
expensive and tasty
tastes and feels cheap

Others:
will not try this again
unhygienic
quiet

Food Quality:
cheap
good price location and dessert
bad burger
bad fries
pricey but ok pizza
good coconut soup
good pat thai
good hot wings
great sushi and reasonable price
fresh with huge variety
bad service good food but expensive

Service:
bad services
poor service (mentioned twice)
good server
nice and friendly
clean environment and good service
great place, food and people

Attitude and others
will not come again
dirty environment
good location
recommended
1 for 1 offer
bad service good food but expensive

TABLE 5.5: Summary of Values of Perceived Trustworthiness and Perceived
Helpfulness. All DVs are on a Likert scale from 1 to 5.

Factor1:
Code

Granularity

Factor2:
Text

Granularity

Perceived Trustworthiness Perceived Helpfulness
(M±S.D.)Confidence Score,

Rank
(M±S.D.)

Containing Ability
(M±S.D.)

Short Phrases
(1-3 words)

Sentence 2.95 ± 1.15 3.00 ± 1.25 3.60 ± 1.07
Paragraph 2.75 ± 1.13 2.20 ± 1.34 2.30 ± 0.95
Selective 3.45 ± 0.90 3.30 ± 1.16 3.70 ± 1.16

Long Phrases
(4-6 words)

Sentence 3.20 ± 0.97 3.60 ± 0.97 3.80 ± 1.32
Paragraph 3.50 ± 0.84 3.40 ± 1.17 4.30 ± 1.16
Selective 3.50 ± 1.07 3.60 ± 0.84 3.80 ± 1.31

Mix Phrases
(1-6 words)

Sentence 2.35 ± 1.15 2.40 ± 1.35 2.70 ± 1.16
Paragraph 3.05 ± 0.97 3.40 ± 0.97 3.50 ± 0.71
Selective 2.80 ± 0.98 3.20 ± 1.14 1.40 ± 0.97

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

84

Interaction effects A noteworthy interaction was detected between two factors on
Perceived Helpfulness of the system (F(4,54) = 7.94, p < .001). Particularly, under the
Mixed Codes condition, the system was rated significantly more helpful in the Paragraph
condition compared to the Selective condition (p < .001).

For descriptive statistics, the mean Perceived Helpfulness scores exceeds 3 (refer to
Figure 5.7), albeit experiencing slight reductions under particular conditions such as
Mixed Codes × Selective, Mixed Codes × Sentence, and Short Codes × Paragraph. We
also observed that pairing Long Codes with a high level of Text Granularity (Paragraph)
resulted in the highest mean Perceived Helpfulness (4.3/5), significantly surpassing the
scores in any of the other eight conditions. Unexpectedly, the baseline condition (Mixed
Codes × Selective) results in the lowest Perceived Helpfulness. Moreover, when Short
Codes is paired with Paragraph coding, it results in significantly diminished Perceived
Helpfulness, with users rating the system as not helpful. We delve deeper into this
phenomenon from the perspective of task difficulty in Section 5.5.

5.4.11 RQ5: Impact on Subjective Preferences

In this section, we encapsulate the feedback conveyed by participants during and subsequent
to the study.

User Preferred Selective

Greater control over the selection enabled participants to receive more accurate suggestions,
which subsequently motivated them to choose suggestions more frequently. This is
evidenced by the participant comment: "Because I can adjust the selection, then I think
the way the numbers (confidence score) work...sometimes the one on the top is the one I want."
(P26, Mixed Codes and Selective).

Even though the length of text selections was similar between Selective and Sentence,
participants showed a preference for Selective, as articulated by P18: "The main difference
is that for the sentence one, some sentences don’t have meaning. But for selective, I could group
the sentences with the same meaning together under one topic." (Long Codes and Selective).

Imperfect AI Suggestions Still Contribute Value

In many instances, participants found the suggested codes were close to their original
ideas: "I find it relatively helpful. The recommended codes bear some similarity to what I had
in mind, so I don’t have to ponder excessively." (P20, Long Codes and Paragraph).

Whereas, even if the suggestions didn’t always precisely align with the participants’
requirements, they were still viewed as helpful. The suggested codes from the list
inspired participants to combine existing codes to generate new ones and refine their

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

85

FIGURE 5.7: User’s Perceived Helpfulness of code suggestions. Error bars
show .95 confidence intervals. Y-axis represents 1-5 Likert score, where
1 represents a complete lack of helpfulness and 5 is the highest level of

helpfulness.

own. The system’s feature that allowed users to modify suggested codes was particularly
appreciated:

"I think they [suggestions] are quite helpful. They kind of give you a hint about what you
could write for the keywords or summaries." (P28, Mixed Codes and Sentence).

Code Suggestions Promote Consistency

Several participants highlighted that the suggestions aided them in maintaining consistency
throughout the coding process:

"The recommendation list seems somewhat helpful because it enables me to apply a consistent
metric when assessing these text streams. As a result, I can establish a bit more consistency
between the texts as I formulate my codes." (P22, Mixed Codes and Sentence).

Too Long Text Selections (Paragraph) Presents Challenges

Overall, participants indicated that AI would need to bolster its performance to meet
their expectations. Specifically, a notable challenge inherent in AI is its struggle to
capture nuanced information within the text:

"The system failed to capture the context of sentences within the paragraph. At times,
sentences were unrelated to one another - one might discuss good service while another addressed
food, indicating different contexts within each review. Consequently, the system couldn’t discern
the nuances of individual sentences and provide accurate confidence scores." (P39, Mixed Codes
and Sentence).

5.5 Discussion

Our discussion first delves into an examination of task difficulty, outlining how various
conditions were deemed more challenging than others. Following this, we unpack the

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

86

diverse elements of trust and reliance between humans and AIQCs under evaluation.
Lastly, we traverse through the significance of differing granularity conditions, especially
in relation to their relevance in more realistic qualitative analysis scenarios.

5.5.1 Task Difficulty Across Conditions for Open Coding

Qualitative Open Coding: A Series of Distinct Tasks Rather than a Singular Whole

In essence, our nine conditions simulate various levels of difficulty associated with
Open Coding tasks. Our findings advance a nuanced understanding, positing that coding
tasks can differ based on their intrinsic difficulty or the effort demanded. Some tasks
may boost the model’s performance, while others might hinder it. This viewpoint
diverges from prior research in this domain, which might have predominantly treated
Open Coding as a uniform, undifferentiated task, intending to devise a solitary method
to facilitate it. This view has overlooked the inherent complexity of subjective tasks like
qualitative coding, a scenario where human-AI interaction could play a pivotal role.

Challenging Paragraph Conditions

In Paragraph, the units of text to be coded were longer compared to those in the Sentence
and Selective conditions. Moreover, based on subjective feedback, Paragraph might have
included various contradictory nuanced information. Therefore, participants needed
more time to decide on a code, leading us to infer that the coding task under the
Paragraph conditions was relatively more challenging.

However, according to the model performance data, an increase in context and text
selection seems to enable the model to get higher precision. Conversely, a decrease in
the text selection did not yield the same level of model performance.

At first glance, they may seem contradictory to each other. However, a paragraph
may have a higher probability of matching the code, but it may also contain extraneous
and even contradictory information not included in the “highly matching code". Consequently,
despite the possibility of paragraphs yielding higher model performance scores, they
present a substantial challenge to both users and AI, particularly due to the nuanced
information they may encapsulate.

The Complexity of Long Codes Compared to Short Codes and Mixed Codes

The Long Codes conditions seemingly posed greater challenges for participants due
to the requirement of a minimum number of words for each code, as indicated by
the extended decision-making times. Conversely, participants found the Short Codes
conditions less strenuous as they closely mirrored conventional coding scenarios, with
code lengths similar to those in the Mixed Codes.

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

87

5.5.2 Reliance and Perceptions Discrepancies Due to Varied Task Difficulties

Higher Reliance for Simpler Tasks

In terms of Text Granularity, our data reveal that users exhibit greater reliance on AI, in
simpler tasks at the Selective and Sentence levels, as indicated by an average selection
rate of 29%. This contrasts with the harder Paragraph tasks, which only saw an average
selection rate of 17%.

Significant individual differences also emerged. For instance, in Selective and Sentence
conditions, certain participants (P14 for Selective, P7 for Sentence) ignored all suggestions,
while others had high selection rates (73% for P10 in Selective, 53% for P17 in Sentence).
For the tougher Paragraph conditions, an overwhelming 11 participants completely
disregarded the system’s suggestions, with the peak selection rate merely reaching 38%
(P25, P27, P28).

Contrasting Reliance and Perceived Helpfulness in Complex Tasks

Interestingly, while reliance was at its nadir in the Paragraph setting, Perceived Helpfulness
was substantially high, and Perceived Trustworthiness was also considerable, especially
for more complex tasks with longer AI suggestions. In particular, during tasks with
longer codes (Long Codes × Paragraph and Mixed Codes × Paragraph), users, while finding
individual suggestions inadequate for selection (thus the low Selecting Rate), still referenced
them or made minor adjustments to construct their codes. This added flexibility enhanced
their Perceived Helpfulness, especially in the challenging task of Long Codes × Paragraph,
scoring 4.3/5 in Perceived Helpfulness.

5.5.3 Over- and under-reliance on AIQCs

As discussed, different coding tasks resulted in varying reliance on the system. However,
AIQCs should strike a balance between user exploration and AI assistance, without
promoting either an excessive reliance on or insufficient use of AI suggestions. Over-reliance
can lead to shallow coding, while under-reliance may result in missed opportunities for
valuable AI assistance. As such, striking the right balance is crucial for the effective use
of AI in qualitative coding.

Reasons for Under-reliance

The low Selecting Rate for Paragraph tasks is primarily due to fewer coding units, resulting
in fewer data points for model training. Typically, participants would only choose from
the last few suggestions, with a total selection count of approximately 8, in comparison

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

88

to around 35 in Sentence and 20+ in Selective tasks. Thus, we anticipate that with more
data points to train the model, the system reliance would increase.

For those scenarios where data points may not significantly increase, enabling users
to edit their codes post-selection could offer indirect assistance (through the process of
selection and then editing). Although these improvements might not be prominently
reflected in Selecting Rate, they could elevate users’ subjective experience, potentially
bolster the system’s trustworthiness, and encourage users to fully exploit the system
(BANOVIC et al., 2023).

Over-reliance Risk

As detailed in section 5.4.9 and 5.4.9, reliance could ostensibly reduce human effort by
enabling users to re-utilize previous codes, causing a more focused coding. However,
it also carries an over-reliance risk. Over-reliance might disrupt the delicate balance
between focused coding and the generation of diverse coding outcomes, which could
narrow the scope of interpretation and potentially reduce the depth and breadth of the
coding process. Therefore, ensuring a balance between AI assistance and human input
is key to maximizing both the efficiency and depth of qualitative coding. This balance
should never be underestimated in the design of a truly trustworthy AIQCs, as opposed
to a system that deceives users’ trust without meriting it (BANOVIC et al., 2023).

5.5.4 Optimal Code Granularity Varies Between Users and AI

Participants usually generate shorter codes when possible. The Mixed Codes, which
allows them to create more specific and longer codes, resembles real-life open coding
tasks more closely. The similar code lengths in Short Codes and Mixed Codes under both
Selective and Sentence conditions imply that participants aim to minimize their codes’
length when given the option in the given study. Hence, Short Codes or Mixed Codes can
be considered optimal code granularity for users.

Conversely, while users prefer to add shorter codes, they anticipate longer code
suggestions from AI. This is evident in the consistently higher perceived helpfulness of
Long Codes over other Text Granularity conditions. We infer that longer AI suggestions
enable more expressiveness, thereby reducing potential misinterpretations between
users and AI.

Moreover, a discrepancy exists between human and AI preferences when it comes
to text selection for coding. Participants generally favored labeling shorter selections
that accommodated shorter codes, as indicated by the similar selection lengths in the
Short Codes × Selective and Mixed Codes × Selective cases, where users selected only
the critical single semantic elements for coding. On the other hand, AI favored a
more comprehensive context for accurate code prediction, thus creating a divergence

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

89

between human and AI inclinations. In particular, the Short Codes × Paragraph condition
exemplified a considerable mismatch. Although it offers the optimal code length for
users, the restriction of a three-word code for an extensive text led to a disconnect
between the text and code, significantly increasing the task difficulty. This resulted
in the lowest Selecting Rate of 14% among users and lower Perceived Helpfulness than
neutral (2.3/5).

In addition, users seemed to favor uniform AI suggestions, as indicated by their
perception of Mixed Codes suggestions as less helpful than both Long Codes and Short
Codes. The mix of long and short codes in the suggestion list under Mixed Codes might
have led to information overload, making it challenging for users to locate useful information.
Moreover, while the added flexibility, notably in Selective codes, could theoretically
benefit the users, it seemed to inadvertently decrease the user’s perceived helpfulness
of the suggestions in Mixed Codes × Selective.

5.5.5 Coding Strategies in Real Life

Selective is Best for Coding

Notably, we observed the highest levels of Behavioral Trust in the Selective coding conditions.
Selective coding most accurately emulates how a single researcher might begin to navigate
data in a real-life scenario. They would select the most pertinent phrases and then
generate a suitable label. In practice, it is crucial to utilize various coding levels, alternating
perspectives, and varying depths of understanding to produce a more comprehensive
and diverse range of codes.

Sentence for Collaborative Coding

In fact, Selective and Sentence coding scenarios share several similarities, notwithstanding
certain notable differences. The variance between these two conditions is significantly
less than that between them and the Paragraph condition. While Selective may generally
be the go-to granularity for coding, Sentence level coding can be particularly beneficial
for collaborative coding, where consistency between multiple users is required. This
is especially important when computing inter-rater reliability scores, as it requires a
straightforward, unambiguous text selection unit.

Paragraph for Summarizing Long Texts

Paragraph may still prove valuable for users attempting to summarize lengthy texts in
real coding scenarios. Opting for a Paragraph approach assists in distilling entire pages
into a few concise labels.

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

90

5.6 Implications for Design

We propose several guidelines to cultivate appropriate reliance and foster a productive
human-AI collaboration within the context of AIQCs.

5.6.1 Fostering Trustworthiness during Under-reliance on AIQCs

Offering Extensive and Modifiable Suggestions

We observed that while users generally found less difficulty in creating Short Codes
and Mixed Codes, Long Codes suggestions seem to be perceived as more beneficial and
trustworthy. The utility of longer suggestions stems from their capacity to convey a
wealth of information, thereby minimizing ambiguity and potentially delivering deeper
meaning. This extensive nature also enables users to refine their code by editing suggestions,
tailoring them to their unique requirements. This active participation makes users feel
more in control, which could result in increased trust and system usage.

Exploiting Larger Training Datasets

We noted that some participants did not utilize AI suggestions during the Paragraph
tasks. This lack of use could be attributed to the reduced quantity and quality of the
data used for training, resulting in initially subpar AI suggestions.

To address this concern, we propose the application of data augmentation techniques4,
generating additional training data. Furthermore, if feasible, the integration of data
from diverse users and sources could be beneficial for open coding. This recommendation
aligns with the current trend towards a data-centric approach, as advocated in recent
literature (Eyuboglu et al., 2022; Motamedi, Sakharnykh, and Kaldewey, 2021; Whang
et al., 2021).

Facilitating Open Coding Through Multifaceted Models

We further recommend utilizing multiple models to generate code outputs from diverse
perspectives. Rather than exclusively relying on text classification or topic modeling,
we advocate for considering and integrating other methodologies, such as Generative
AI like GPT-4 5. By doing so, users can construct their codes under a wider umbrella
of system assistance, thereby enabling more informed decision-making (Feuston and
Brubaker, 2021; J. A. Jiang et al., 2021). Moreover, the system could offer suggestions
inspired by codes from other users, thus presenting an alternate view of the data.

4https://www.tensorflow.org/tutorials/images/data_augmentation
5https://atlasti.com/ai-coding-powered-by-openai, https://openai.com/chatgpt

https://www.tensorflow.org/tutorials/images/data_augmentation

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

91

5.6.2 Mitigating Over-reliance to Prevent Shallow Codes

We’ve recognized the potential for over-reliance in certain situations. At times, AI that
lacks sufficient trustworthiness could deceive users into considering it ‘trustworthy’
(BANOVIC et al., 2023), leading to excessive reliance. Below, we delve into several
specific design strategies to mitigate this issue.

Implementing a Delay in Suggestions Display upon Selection.

The system could be designed to deliberately delay the display of suggestions or only
present codes upon a user’s request, ensuring they appear specifically when a user
struggles to formulate a code (Buçinca, Malaya, and Gajos, 2021). This feature would
afford the user sufficient time to contemplate an initial code, and subsequently ensure
that the displayed suggestions align effectively with their requirements.

Providing Explanations for AI Suggestions

A promising strategy might be to present explanations alongside the code suggestions
(Vasconcelos et al., 2023). For example, by displaying the original data from which
the suggestions are derived, coders can compare and ascertain the appropriateness
of coding the current data under a specific code. This approach not only encourages
deeper thinking but also fosters appropriate reliance on the system.

5.7 Limitations and Future Work

This work has limitations. First, understanding the accuracy and overall performance
of the model is crucial for gauging the system’s effectiveness under varying conditions.
Ideally, each text segment should have a corresponding ground truth value against
which we can compare system recommendations to evaluate model performance.

To estimate this, we utilized the majority of user codes as a proxy for the ‘ground
truth’ of a specific text segment. However, this approach offers only an approximation
of the actual scenario. It might overlook the nuances of coding; for instance, an insightful
interpretation that slightly deviates from the core idea could still be correct. However,
in our labeling process, it might be deemed "not relevant", which could undervalue the
system’s suggestions compared to their true potential usage. Future research could
further investigate better ways to evaluate model performance or establish a more
suitable ground truth for subjective tasks such as qualitative coding.

Moreover, our choice to focus on codes of varying abstraction levels and specificity
stems primarily from their representation of different user coding habits has been stated
in Section 5.2.2. In particular, to emulate these different levels of abstraction and interpretation,

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

92

we opted for a simplistic albeit imperfect method for user operation. Codes of three
words or less represent concise coding (short codes), those between four to six words
signify verbose coding (long codes), and codes ranging from one to six words (mixed
codes) represent natural coding. We selected these parameters for the study setup
based on pilot tests conducted on our own materials prior to the formal study. However,
we acknowledge that this classification has its shortcomings. For instance, the specific
length of the codes is intimately linked to the domain of the coding material, and
the delineation of codes across different levels of the factor remains unclear. Looking
forward, it would be promising to extend these results to various types of content, with
the goal of gaining a more comprehensive understanding of the specific assistance and
suggestions users truly need.

Additionally, the selected parameters of limitation (1-3 words, 4-6 words, etc.) used
for coding are, while simplistic, imperfect representations of user operations, mirroring
the range from concise to lengthy and natural coding habits. The specific values,
however, could vary significantly based on the coding material. Moreover, it’s essential
to motivate participants to execute tasks with greater efficiency, thereby achieving a
more precise measure of decision-making time. Future studies should further investigate
these aspects, aiming to devise more general strategies for controlling and managing
human-AI interaction habits.

Overall, our primary objective in this work is to appeal to developers and researchers,
underlining the importance of developing trustworthy AIQCs that fosters robust
human-AI collaboration by taking into account the unique dynamics of human-AI
interaction within qualitative coding. It is critical to not only integrate advanced
technologies into this domain but also to view Open Coding as a collection of different
subtasks. Therefore, the design of various tools should aim to support the nuanced
and varied coding tasks inherent within Open Coding. Furthermore, the potential risks
for under-utilization (under-reliance) and over-reliance should be considered, as the
former could result in the system being under-utilized, and the latter might lead to less
insightful coding outcomes.

5.8 Conclusion

In this work, we explored how Code and Text Granularity could influence user trust and
reliance in AIQCs by conducting a split-plot design study with 30 participants and a
follow-up study with 6 participants. Our study highlighted that Open Coding, due to
its unique human-AI interaction dynamics, should be approached as a composite of
various subtasks. Each of these subtasks necessitates a tailored design. Our findings
also indicate trust discrepancies stemming from varied subtask difficulties and illuminate
the problems of over-reliance and under-reliance existing in different conditions. These

Chapter 5. Investigating the Impact of Human-AI Interaction on User Trust and
Reliance in AI-Assisted Qualitative Coding

93

results form a foundation for future research on the user trust, reliance, and utility of
AIQCs.

94

Chapter 6

Building A Lower-barrier, Rigorous
Workflow for Collaborative
Qualitative Analysis with Large
Language Models

6.1 Motivation

Rigor and in-depth interpretation are primary objectives in qualitative analysis (Watkins,
2017; Maher et al., 2018). Collaborative Qualitative Analysis (CQA) underscores this by
mandating researchers to code individually and converge on interpretations through
iterative discussions (Cornish, Gillespie, and Zittoun, 2013; Anderson, Guerreiro, and J.
Smith, 2016; Hall et al., 2005; Richards and Hemphill, 2018; N. McDonald, Schoenebeck,
and Forte, 2019) (see Figure 6.1). Such a method is instrumental in preserving rigor (Richards
and Hemphill, 2018) and facilitating a richer, more nuanced grasp of data interpretation (Anderson,
Guerreiro, and J. Smith, 2016).

However, adhering strictly to the CQA’s prescribed workflow, which is integral
for achieving both rigor and depth goals, poses challenges due to its associated time
and labor costs as well as inherent complexity. For the former issue, a primary reason is
that the iterative nature of CQA requires the involvement and coordination of many
coders (Ganji, Orand, and D. W. McDonald, 2018; Gao, Choo, et al., 2023), but the
conventional CQA tools such as MaxQDA, NVivo, and Google Docs/Sheets are not
specifically designed for this aspect. They necessitate additional team coordination
steps (Malone and Crowston, 1994; Entin, 2000), like document downloading, data
sharing in the team, data importing, manual searching, and crafting codebook tables.
For the latter issue, the complexity of the CQA process, which involves multiple steps
with specific requirements for each, presents a considerable entry barrier for those less
experienced or unfamiliar with CQA standards like graduate students, early-career
researchers, and diverse research teams (Cornish, Gillespie, and Zittoun, 2013; Richards

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

95

Independent
Open Coding

Team
Discussion

Development
of Codebook

Final Coding

Multiple iterations

Our focus

Qualitative
Data

FIGURE 6.1: Collaborative Qualitative Analysis (CQA) (J. Corbin and
Strauss, 2008; J. M. Corbin and Strauss, 1990; Richards and Hemphill,
2018) is an iterative process involving multiple rounds of iteration
among coders to reach a final consensus. Our goal with CollabCoder

is to assist users across key stages of the CQA process.

and Hemphill, 2018). For instance, Atlas.ti Web lacks an independent coding space.
This absence means that the coding process is always visible and can potentially influence
others’ open coding (Gao, Choo, et al., 2023), which might lead to confusion or incorrect
practices. Despite this challenge, most software is specifically engineered to support
basic functions, such as proposing codes. They typically lack a comprehensive and
holistic theoretical framework that could provide more effective assistance. This limitation
leads to much confusion, even among those well-versed in CQA theories, compelling
them to opt for independent coding methods in exchange for efficiency, resulting in
fewer interactive discussions, diminished coding rigor and depth, and ultimately, the
risk of the outcomes reflecting the individual coder’s inherent biases (Cornish, Gillespie,
and Zittoun, 2013; Anderson, Guerreiro, and J. Smith, 2016).

Current HCI researchers are mainly focusing on addressing effort-intensive challenges
and have developed specialized tools to streamline various aspects of the CQA process.
For example, Zade et al. (Zade et al., 2018) suggested enabling coders to order different
states of disagreements by conceptualizing disagreements in terms of tree-based ranking
metrics of diversity and divergence. Aeonium (Drouhard et al., 2017) allows coders
to highlight ambiguity and inconsistency and offers features to navigate through and
resolve them. With the growing prevalence of AI, Gao et al. (Gao, Choo, et al., 2023)
underscores the potential of AI in CQA through CoAIcoder, suggesting that AI agents
that provide code suggestions based on teams’ coding histories accelerate collaborative
efficiency and foster a shared understanding at the early stage of coding.

With the advancements of LLMs1 like GPT-3.5 and GPT-42, they have been pivotal
in enhancing qualitative analysis due to the exceptional abilities in understanding and
generating text. Atlas.ti Web, a commercial platform for qualitative analysis, integrated

1In this paper, AI and LLMs are used interchangeably to refer to the broader field of Artificial
Intelligence, specifically large language models. GPT, as an example of a large language model,
specifically refers to products developed by OpenAI, such as ChatGPT.

2https://openai.com/blog/introducing-chatgpt-and-whisper-apis

https://openai.com/blog/introducing-chatgpt-and-whisper-apis

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

96

FIGURE 6.2: Overview of the six steps involved in collaborative
qualitative analysis proposed by Richards and Hemphill, 2018.

OpenAI’s GPT model on March 28, 20233. This integration offers functionalities like
one-click code generation and AI-driven code suggestions, significantly streamlining
the coding process. LLMs also assist in the deductive coding of large-scale datasets (Xiao
et al., 2023) and are being explored for their potential to replace human coders in
discerning subtle data nuances (Byun, Vasicek, and Seppi, 2023), among other applications.
This integration serves as a key factor in reducing the labor intensity typically associated
with traditional qualitative analysis.

While this existing research provides valuable insights into various facets of CQA,
there has been little emphasis on creating a streamlined workflow to bolster the rigorous
CQA process. Building upon well-accepted CQA steps that are deeply rooted in Grounded
Theory (Clark and Brennan, 1991) and Thematic Analysis (Maguire and Delahunt,
2017), we aim to address this gap by presenting a holistic, one-stop solution that enhances
the CQA process, with an emphasis on the inductive qualitative analysis and consensus
coding, central to the development of the codebook and coding schema. This is in
contrast to the work by Xiao et al. (Xiao et al., 2023), which prioritizes the use of
LLMs to assist deductive coding based on a pre-existing codebook. The overarching
aim is to lower the bar for maintaining the rigor and reliability of the inductive CQA

3https://atlasti.com/ai-coding-powered-by-openai

https://atlasti.com/ai-coding-powered-by-openai

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

97

TABLE 6.1: Summary of Sources Informing Our Design Goals

Sources Content Design Goals (DG)

Step1: Semi-systematic
literature review

insights into the key phases of CQA theories,
including grounded theory and thematic analysis,

detailing inputs, outputs, and practical considerations
for each.

DG1, DG2, DG4, DG5, DG6, DG7

Step2: Examination of
prevalent CQA platforms

insights into essential features, pros, and cons
of key CQA platforms, such as Atlas.ti Web4,

MaxQDA Team Cloud5,
NVivo Collaboration Cloud6,

and Google Docs.

DG1, DG2, DG3, DG8

Step3: Preliminary interviews
with researchers with

qualitative analysis experience

insights into CollabCoder workflow, features, and
design scope through expert feedback, concerns,

and recommendations.
DG1, DG4

process. Our primary objective is to lower the bar of adherence to the rigorous
CQA process, thereby providing a potential for enhancing the quality of qualitative
interpretation (Collins and Stockton, 2018) with controllable and manageable effort.

6.2 Design Goals

6.2.1 Method

To achieve our goals, we extracted 8 design goals (DG) for CollabCoder from three
primary sources (see Table 6.1).

Step1: Semi-systematic literature review We initially reviewed established theories
and guidelines on qualitative analysis. Given our precise focus on theories such as
Grounded Theory and Thematic Analysis and our emphasis on their particular steps,
we used a semi-systematic literature review method (Snyder, 2019; Mäntylä et al.,
2015). This method is particularly aimed at identifying key themes relevant to a specific
topic while offering an appropriate balance of depth and flexibility. Our results are
incorporated into the background section, aiming to establish a robust theoretical foundation
for our work. It also assists in delineating the inputs, outputs, and practical considerations
for each stage of CollabCoder workflow. This method formulates DG1, DG2, DG4,
DG5, DG6, DG7.

Step2: Examination of prevalent CQA platforms The semi-systematic literature review
was followed by triangulation with existing qualitative analysis platforms, for which
we assessed the current state of design by examining their public documents and official
websites (the detailed examination are summarized in Appendix Table B.1). This examination
enables us to gain insights into the critical features, advantages, and drawbacks of
these CQA platforms, such as the dropdown list for the selection of historical codes
and the calculation of essential analysis metrics. As a result of this triangulation, we

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

98

successfully extracted new design goals, DG3 and DG8, and refined the existing DG1
and DG2.

Step3: Preliminary interviews with researchers with qualitative analysis experience
Based on the primary understanding of the CQA theories, and the primary version
of 8 DGs, we subsequently developed the primary prototype (see Appendix Figures
B.1, B.2, and B.3). We utilized the initial version of CollabCoder to conduct a pilot
interview evaluation with five researchers possessing at least one year of experience
in qualitative analysis (refer to Table 6.2). The aim was to gather expert insights into
the workflow, features, and design scope of the theory-driven CollabCoder, thereby
refining our design goals and adjusting the prototype’s primary features. During the
evaluation, the researchers were first introduced to the CollabCoder prototype. Subsequently,
they shared their impressions, raised questions, and offered suggestions for enhancements.
We transcribed their interview audio and did a thematic analysis on the interview
transcriptions (see analysis results in Appendix Figure B.4) and refined two of the
design goals (DG1 and DG4) based on their feedback.

TABLE 6.2: Participant Demographics in Exploration Interview

No. Fields of Study Current Position QA Software Years of QA

P1 HCI, Ubicomp Postdoc Researcher Atlas.ti 4.5

P2 HCI, NLP PhD student
Google Sheet/
Whiteboard

4

P3 HCI, Health PhD student Google Sheet 4
P4 HCI, NLP PhD student Excel 1.5
P5 Software Engineering PhD student Google Sheet 1

6.2.2 Results for Design Goals

DG1: Supporting key CQA phases to encourage stricter adherence to standardized
CQA processes Our primary goal is the creation of a mutually agreed codebook
among coders, essentially focusing on the inductive qualitative analysis process. Therefore,
from the six-step CQA methodology (Richards and Hemphill, 2018), we are particularly
concerned with "open and axial coding", "iterative discussion", and the "development
of a codebook".

Although complying with CQA steps is critical for deriving robust and trustworthy
data interpretations (Richards and Hemphill, 2018), the existing software workflows
and AI integrations are quite demanding. These systems currently do not offer a
centralized and focused workflow; there is a noticeable absence of fluidity between
stages, where the output of one phase should ideally transition seamlessly into the
input of the next. This deficiency complicates the sensemaking process among coders

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

99

and often discourages them from adhering to the standardized CQA workflow. This
sentiment is mirrored by an expert (P1) who remarked, "In a realistic scenario, how many
people do follow this [standard] flow? I don’t think most people follow.""

In response, we have tailored a workflow that integrates the key CQA stages we
identified. This streamlined process assists the coding team in aligning with the standard
coding procedure, ensuring results from one phase transition seamlessly into the next.
Our goal is to simplify adherence to the standard workflow, making it more accessible.

DG2: Supporting varying levels of coding independence at each CQA stage to ensure
a strict workflow. In Grounded Theory (J. Corbin and Strauss, 2008; Richards and
Hemphill, 2018), a primary principle is to enable coders to independently produce
codes, cultivate insights from their own viewpoints, and subsequently share these
perspectives at later stages. However, we have found that widely-used platforms such
as Atlas.ti Web and NVivo, while boasting real-time collaborative coding features, fall
short in providing robust support for independent coding. The persistent visibility of
all raw data, codes, and quotations to all participants may potentially bias the coding
process. Moreover, Gao et al. (Gao, Choo, et al., 2023) also found that in scenarios
prioritizing efficiency, some coders are willing to compromise independence, which
could potentially impact coding rigor.

In response, our workflow designates varying levels of coder independence at different
stages: strict separation during the independent open coding phase and mutual code
access in discussion and code grouping phases. We aim to ensure that coders propose
codes from their unique perspectives, rather than prematurely integrating others’ viewpoints,
which could compromise the final coding quality.

DG3: Supporting streamlined data management and synchronization within the
coding team. While Atlas.ti Web has faced criticism for its lack of support for coder
independence (Gao, Choo, et al., 2023), as outlined in DG2, it does offer features like
synchronization and centralized data management. Through a web-based application,
these features allow teams to manage data preprocessing and share projects. This
ensures seamless coding synchronization among members. The sole requirement for
participation is a web browser and an Atlas.ti Web account. In contrast, traditional
software like MaxQDA and nVivo lack these capabilities. This absence necessitates
additional steps, such as locally exporting coding documents post-independent coding
and then sharing them with team members7. These steps may introduce obstacles to
a smooth and focused CQA process. However, as mentioned in DG2, Atlas.ti Web
sacrifices coding independence.

7https://www.maxqda.com/help-mx20/teamwork/can-maxqda-support-teamwork

https://www.maxqda.com/help-mx20/teamwork/can-maxqda-support-teamwork

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

100

In response, we strive to strike a balance between data management convenience
and coding independence, facilitating seamless data synchronization and management
via a web application while maintaining design features that support independent
coding.

DG4: Supporting interpretation at the same level among coders for efficient discussion.
As per Saldana’s qualitative coding manual (Saldaña, 2021), coders may use a "splitter"
(e.g., line-by-line) or a "lumper" (e.g., paragraph-by-paragraph) approach. This variation
can lead coders to work on different levels of granularity, resulting in many extra
efforts to align coding units among coders for line-by-line or code-by-code comparison,
in order to make them on the same level to determine if they have an agreement or
consensus, not to mention the calculation of IRR (Gao, Choo, et al., 2023). Therefore,
standardizing and aligning data units for coding among teams is essential to facilitate
efficient code comparisons and IRR calculations (Kurasaki, 2000; O’Connor and Joffe,
2020; Ganji, Orand, and D. W. McDonald, 2018). Two prevalent approaches to achieve
this are: 1) allowing the initial coder to finish coding before another coder commences
work on the same unit (J. Díaz et al., 2023; Kurasaki, 2000; O’Connor and Joffe, 2020),
and 2) predefining a fixed text unit for the team, such as sentences, paragraphs, or
conceptually significant "chunks" (O’Connor and Joffe, 2020; Kurasaki, 2000).

In response, we aim to enhance code comparison efficiency by offering coders predefined
coding unit options on CollabCoder, thereby ensuring alignment between their interpretations.
However, it is important to recognize an intrinsic trade-off between unit selection
flexibility and effort expenditure. While reduced flexibility can decrease the effort
needed to synchronize coders’ understanding in discussions, it may also constrain
users’ freedom in coding. According to expert feedback, our workflow represents an
"ideal" scenario. As one expert (P3) noted, "I think overall the CollabCoder workflow pretty
interesting... However, I think the current workflow is a very perfect scenario. What you haven’t
considered is that in qualitative coding, there’s often a sentence or a section that can be assigned
to multiple codes. In your current case, you are assigning an entire section into just one code."
Additionally, our proposed workflow appears to operate under the assumption that
coding is applied to specific, isolated units, failing to account for instances where the
same meaning is distributed across different data segments. "Because sometimes [for a
code] you need one part of one paragraph, the other part is in another paragraph. right?" (P1)

DG5: Supporting coding assistance with LLMs while preserving user autonomy.
As Jiang et al. (J. A. Jiang et al., 2021) suggested, AI should not replace human autonomy,
participants in their interview said that "I don’t want AI to pick the good quotes for me...".
AI should only offer recommendations when requested by the user, after they have
manually labeled some codes, and support the identification of overlooked codes based

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

101

on existing ones. To control user autonomy, the commercial software, Atlas.ti Web,
has transitioned from auto-highlighting quotations and generating code suggestions
via LLMs for all documents with a single click, to now allowing users to request such
suggestions on demand 8. The platform’s earlier AI-driven coding, although time-saving,
compromised user control in the coding process.

In response, we emphasize user autonomy during the coding process, letting coders
first formulate their own codes and turning to LLM assistance only upon request.

DG6: Facilitating deeper and higher-quality discussion. CollabCoder’s primary objective
is to foster consensus among coders (Anderson, Guerreiro, and J. Smith, 2016; Richards
and Hemphill, 2018). This demands quality discussions rooted in common ground.
Common ground (Patel, Pettitt, and Wilson, 2012; G. M. Olson and J. S. Olson, 2000)
pertains to the information that individuals have in common and are aware that others
possess, a notion rooted in the grounding process in communication (Clark and Brennan,
1991; Bjørn et al., 2014). Grounding is achieved when collaborators engage in deep
communication (Bjørn et al., 2014). A lack of common ground can lead to distrust,
misunderstandings, poor team performance and decision-making.

In response, we aim to establish common ground between coders, in order to: 1)
facilitate deeper and higher-quality discussion by surfacing underlying coding disagreements;
2) concentrate coders’ efforts on the most critical parts that need the most discussion (Drouhard
et al., 2017; Zade et al., 2018).

DG7: Facilitating cost-effective, fair coding outcomes and engagement via LLMs.
Once the common ground is established, achieving a coding outcome that is cost-effective,
fair, and free from negative effects becomes a challenging yet crucial task (Jameson,
Baldes, and Kleinbauer, 2003; Emamgholizadeh, 2022). To reach a consensus, the team
often engages in debates or invests time crafting code expressions that satisfy all coders
(Emamgholizadeh, 2022), significantly prolonging the discussion. In addition, Jiang et
al. (J. A. Jiang et al., 2021) reveal that team leaders or senior members may have the
final say on the codes, potentially introducing bias.

In response, our objective is to foster deep, efficient, and balanced discussions within
the coding team. We ensure that every coder’s prior open coding decisions are respected,
allowing them to actively participate in both discussions and the final decision-making
process, with the support of LLMs.

DG8: Enhancing the team’s efficiency in code group generation Prevalent QA software
like Atlas.ti, MaxQDA, and nVivo prominently feature a code manager. This tool

8https://atlasti.com/atlas-ti-ai-lab-accelerating-innovation-for-data-analysis,
accessed on 14th August 2023

https://atlasti.com/atlas-ti-ai-lab-accelerating-innovation-for-data-analysis

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

102

Data

Alice

Discussion Discussion Discussion

Phase 1
Independent Open Coding

Individual workspace Shared workspace

Input Output

original data units individual codes for
each pre-de�ned units

Unit1

Unit2

Unit3

Input Output
code pairs with accordingly
similarity and decision-making
information (keywords support,
certainty)

a list of code decisions

Code1

Code2

Code3

Unit1

Unit2

Unit3

CodeA

CodeB

CodeC
Bob

Code1 CodeA

Final
Code1

Input Output

a list of code decisions code groups /
codebook

Final
Code1

Final
Code3

Final
CodeN

Codegroup1

Codegroup2

Final
Code1

Final
Code3

Code1 CodeB

Final
Code2

Code1 CodeC

Final
Code3

Unit1

Unit2

Unit3

writing reports...

Phase 2
Merge and Discussion

Phase 3
Code Group Generation After codingPrecoding

split the data
into units

GPT provides �nal
code suggestions

GPT provides code
suggestions

GPT provides code
group suggestions

FIGURE 6.3: CollabCoder Workflow. The lead coder Alice first splits
qualitative data into small units of analysis, e.g., sentence, paragraph,
prior to the formal coding. Alice and Bob then: Phase 1: independently
perform open coding with GPT assistance; Phase 2: merge, discuss,
and make decisions on codes, assisted by GPT; Phase 3: utilize GPT to
generate code groups for decided codes and perform editing. They can
write reports based on the codebook and the identified themes after the

formal coding process.

lets coders track, modify, and get a holistic view of their current code assignments.
It plays a vital role in facilitating discussions, proposing multiple code groups, and
aiding code reuse during coding. Meanwhile, Feuston et al. (Feuston and Brubaker,
2021) noted some participants used AI tools to auto-generate final code groups from
human-assigned codes.

In response, we offer the code manager that allows for manual editing and adjustment
of code groups. Additionally, we aim to integrate automatic code group generation to
streamline the coding process via the assistance of LLMs.

6.3 CollabCoder System

With the aforementioned design goals in mind, we have finalized the CollabCoder
system and its CQA workflow (refer to Figure 6.3).

6.3.1 CollabCoder Workflow & Usage Scenario

We introduce an example scenario to demonstrate the usage of CollabCoder (see Figure
6.5). Suppose two coders Alice and Bob are conducting qualitative coding for their
data. The lead coder, Alice, first creates a new project on CollabCoder, then imports

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

103

Pre-coding: Create Consistent Data Units

How A Business Works was an excellent book to read as I began my first
semester as a college student. Although my goal is to major in Business,
I started my semester off with no idea of even the basic guidelines a Business
undergrad should know. This book describes in detail every aspect dealing
with business relations, and I enjoyed reading it. It felt great going to my
additional business classes prepared and knowledgeable on the subject
they were describing. Very well written, Professor Haeberle! I recommend
this book to anyone and everyone who would like additional knowledge
pertaining to business matters.

This is an inspirational and insightful book that is well written and contains
some profound methods to improve your thinking and improve your life.
The ideas and methods that Robbins suggests are not just theory but I can
attest from personal experience that they really work as I have successfu-
lly used some of the concepts. Fried summarizes the best personal develo-
pment strategies and combines it with brilliant business principles to help
you become the entrepreneur of your own existence. I LOVED it.

Whether just starting out with a new business or being a seasoned owner
pregnancy will throw some curve balls. This book helps you navigate thro-
ugh business and pregnancy and how they relate to one another. Must read
for women who own their own businesses and want/are starting a family.
Disclosure - I received a copy of this book for review purposes. However
all opinions are my own.

How A Business Works was an excellent book to read as I began my first
semester as a college student. Although my goal is to major in Business,
I started my semester off with no idea of even the basic guidelines a Business
undergrad should know. This book describes in detail every aspect dealing
with business relations, and I enjoyed reading it. It felt great going to my
additional business classes prepared and knowledgeable on the subject
they were describing. Very well written, Professor Haeberle! I recommend
this book to anyone and everyone who would like additional knowledge
pertaining to business matters.

This is an inspirational and insightful book that is well written and contains
some profound methods to improve your thinking and improve your life.
The ideas and methods that Robbins suggests are not just theory but I can
attest from personal experience that they really work as I have successfu-
lly used some of the concepts. Fried summarizes the best personal develo-
pment strategies and combines it with brilliant business principles to help
you become the entrepreneur of your own existence. I LOVED it.

Whether just starting out with a new business or being a seasoned owner
pregnancy will throw some curve balls. This book helps you navigate thro-
ugh business and pregnancy and how they relate to one another. Must read
for women who own their own businesses and want/are starting a family.
Disclosure - I received a copy of this book for review purposes. However
all opinions are my own.

I read a lot of motivational, business and self help books. This one is nothing
like the others. There's a ton of great advice in this book, much of it is coun-
ter to conventional wisdom. I found it refreshing to read because the author
is not afraid to say things that may be unpopular. My only real complaint is
that it is such an easy book to read (feels like you are in the room listening
to him speak)that you may end up flying through some of the great points
without them registering fully. Read this one with a highlighter in hand.

1

2

3

4

5

2a

Raw Data

Split the raw data into pre-defined data units, e.g., sentence, paragraph, etc.

Unit1

Unit2

Unit3

Create new project

Bob

Alice

Bob

Invitation

2b

FIGURE 6.4: Precoding: establish consistent data units and enlist coding
team during project creation. The primary coder, Alice, can: 1) name the
project, 2) incorporate data, ensuring it aligns with mutually agreed data
units, 2a) illustrate how CollabCoder manages the imported data units,
3) define the coding granularity (e.g., sentence or paragraph), 4) invite a

secondary coder, Bob, to the project, and 5) initiate the project.

the data, specifies the level of coding as "paragraph", and invites Bob to join the project.
After clicking on CREATE PROJECT, CollabCoder’s parser will split the imported raw
data into units (paragraph in this case). The project can then be shown on both coders’
interfaces.

Phase 1: Independent Open Coding

In Phase 1, Alice and Bob individually formulate codes for each unit in their separate
workspaces via the same interface. Their work is done independently, with no visibility
into each other’s codes. If Alice wants to propose a code for a sentence describing
a business book for students, she can either craft her own code, choose from code
recommendations generated by the GPT model (e.g., "Excellent guide for new

college students", "Insightful read on business fundamentals", "How
A Business Works": semester’s gem), or pick one of the top three most relevant
codes discovered by GPT in her coding history, and making modifications as needed.
She can then select relevant keywords/phrases (e.g., "excellent book", "college
student") from the RAW DATA cell that supports her proposed code, which will be
added to the KEYWORDS SUPPORT beside her proposed code. She can also assign
a CERTAINTY, ranging from 1 to 5, to the code. This newly generated code will be
included in Alice’s personal CODEBOOK and can be viewed by her at any time. They
can check the progress of each other in the PROGRESS at any time (see Figure 6.6).

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

104

Phase 2: Code Merging and Discussion

Figure 6.6 depicts the shared workspace where coding teams collaborate, discussing
their code choices and making final decisions regarding the codes identified in Phase 1.
After completing coding, Alice can check the CHECKBOX next to Bob’s name once she
sees that his progress is at 100%. Subsequently, she can click the CALCULATE button
to generate quantitative metrics such as similarity scores and IRR (Cohen’s Kappa and
Agreement Rate9) within the team. The rows are then sorted by similarity scores in
descending order.

Alice can then share her screen via a Zoom meeting with Bob to COMPARE AND

DISCUSS their codes, starting from code pairs with high similarity scores. For instance,
Alice’s code "Excellent guide for new college students" with a certainty
of 5 includes "excellent book" and "college student" supports, while Bob’s
code "Excellent read for aspiring business students" with a certainty
of 4 includes “How A business works” and "as a college student" as KEYWORDS

SUPPORT. The similarity score between their codes could be 0.876 (close to 1), showing
a high agreement. During the discussion, they both agreed that the final code should
contain the word "student" due to their similar KEYWORDS SUPPORT, but they cannot
reach a consensus about the final expression of the code, they then seek GPT suggestions
(e.g., "Essential college guide for business students", "Semester’s
gem for new college students", Essential college starter), and decide
the final code decision for this unit is "Essential college guide for business

students". However, if the code pair presents a low similarity score, they must
allocate additional time to scrutinize the code decision information and identify the
keywords that led to different interpretations.

Once all code decisions have been made, Alice can then click on REPLACE to replace
the original codes, resulting in an update of Cohen’s Kappa and Agreement Rate. This
action can be undone by clicking on UNDO.

Phase 3: Code Group Generation

Once Alice and Bob have agreed on the final code decisions for all the units, the code
decision list will be displayed on the code grouping interface, as shown in Figure 6.7.
This interface is shared uniformly among the coding team. For further discussion,
Alice can continue to share her screen with Bob on Zoom. She can hover over each
CODE DECISION to refer to the corresponding raw data or double-click to edit. Alice
and Bob can collaborate to propose the final code groups by clicking on ADD NEW

9The calculation methods differ between these two metrics. Cohen’s kappa is a more intricate method
for measuring agreement, as detailed in McHugh, 2012. On the other hand, the Agreement Rate
represents the percentage of data on which coders concur.

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

105

Phase1: Open Coding

Similar codes from Alice

Keywords support

Add Keywords Support:

43

2a

1

1b

1a

Alice
Individual
workspace

excellent book

college students

2

keywords support

Essential
read for
new
college
students

college student

describes in
detail every aspect

great going to my additional
owledgeable on the subject

Add As Support

FIGURE 6.5: Editing Interface for Phase 1: 1) inputting customized
code for the text in "Raw Data", either 1a) choosing from the GPT’s
recommendations, 1b) choosing from the top three relevant codes; 2)
adding keywords support by 2a) selecting from raw data and "Add
As Support"; 3) assigning a certainty level ranging from 1 to 5,
where 1="very uncertain" and 5="very certain"; and 4) reviewing and

modifying the individual codebook.

GROUP and drag the code decisions into the new code group. For instance, a group
"Business knowledge" can include "Simplified business knowledge",
"Cautionary book on costly Google campaigns" and others. Alternatively,
they can request GPT assistance by clicking on the CREATE CODE GROUPS BY AI
button to automatically generate several code groups and place the individual code
decisions into them. These groups can still be manually adjusted by coders. Once they
finish grouping, they can proceed to report their findings as necessary.

6.3.2 Key Features

Three-phase Interfaces

In alignment with DG1, our objective was to incorporate a workflow that supports the
three key phases of the CQA process, as derived from established theories. Accordingly,
our system is segmented into three distinct interfaces:

1. Editing Interface for Phase 1: Independent Open Coding (Figure 6.5).

2. Comparison Interface for Phase 2: Merge and Discuss (Figure 6.6).

3. Code Group Interface for Phase 3: Code Groups Generation (Figure 6.7).

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

106

Phase2: Merge and discuss

0.876

Excellent read for aspiring
business students.

“How A business works”

as a college student

Bob

1

Alice
3

Alice

Bob

A

B

3a

4a

0.11

excellent book

college students

Excellent guide for
new college students.

Essential college guide for
business students

Version1: Essential college guide for
business students

Version2: Semester’s gem for new
college students

Version3: Essential college starter

4

For Alice, Bob’s coding task can only be displayed
after both of them finish coding task2

1a

Alice & Bob Shared workspace

FIGURE 6.6: Comparison Interface for Phase 2. Users can discuss and
reach a consensus by following these steps: 1) reviewing another coder’s
progress and 1a) clicking on the checkbox only if both individuals
complete their coding, 2) two coders’ codes are listed in the same
interface, 3) calculating the similarity between code pairs and 3a) IRR
between coders, 4) sorting the similarity scores from highest to lowest
and identifying (dis)agreements, and 4a) making a decision through
discussion based on the initial codes, raw data, and code supports
or utilizing the GPT’s three potential code decision suggestions.
Additionally, users have the option to "Replace" the original codes
proposed by two coders and revert back to the original codes if required.
They can also replace or revert all code decisions with a single click on

the top bar.

Individual Workspace vs. Shared Workspace

Aligned with DG2, we aim to mirror the distinct levels of independence intrinsic to
the CQA process, reflecting the principles of qualitative analysis theories. CollabCoder
introduces an "individual workspace" — the Editing Interface — allowing users to code
individually during the initial phase without visibility of others’ coding. Additionally,
for facilitating Phase 2 discussions, CollabCoder unveils a "shared workspace." Here,
the checkbox next to each coder’s name activates only after both participants complete
their individual coding, represented as percentages (0-100%). This shared interface
enables the team to collectively review and discuss coding data within an integrated
environment.

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

107

Phase3: Code Group Generation

Balancing business and motherhood

Update/Save code groups

1a

2 3

2b

2a

1

Business knowledge

Alice & Bob Shared workspace

FIGURE 6.7: Code Group Interface. It enables users to manage
their code decisions in a few steps: 1) the code decisions are
automatically compiled into a list of unique codes that users can edit
by double-clicking and accessing the original data by hovering over the
code. 2) users can group their code decisions by using either "Add New
Group" or "Create Code Groups By AI" options. They can then 2a) name
or delete a code group or use AI-generated themes, and 2b) drag the
code decisions into code groups. 3) Finally, users can save and update

the code groups.

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

108

Web-based Platform

In alignment with DG3, our goal is to harness the synchronization benefits of Atlas.ti
Web while preserving the essential independence required for the CQA process. CollabCoder
addresses this by using a web-based platform. Here, the lead coder creates a project
and invites collaborators to engage with the same project. As outlined in section 6.3.2,
upon the completion of individual coding, participants can effortlessly view the results
of others, eliminating the need for downloads, imports, or further steps.

Consistent Data Units for All Users

Aligned with DG4, our objective is to synchronize coders’ interpretation levels to boost
discussion efficiency. CollabCoder facilitates this by segmenting data into uniform
units (e.g., sentences or paragraphs) that are collaboratively determined by all coders
prior to data importation or the onset of coding task.

LLMs-generated Coding Suggestions Once the User Requests

Aligned with DG5, we aim to empower coders to initially develop their own codes and
then seek LLMs’ assistance when necessary, striking a balance between user autonomy
and the advantages of LLMs’ support. Apart from proposing their own codes by
themselves, CollabCoder offers LLMs-generated code suggestions when a user interacts
with the input cell. These suggestions appear in a dropdown list for the chosen data
unit after a brief delay, allowing users time to think about their own codes first. At the
same time, CollabCoder identifies and provides the three most relevant codes from the
current individual codebook for the given text unit, ensuring coding consistency when
reusing established codes.

A Shared Workspace for Deeper Discussion

In alignment with DG6, our goal is to establish a shared understanding and foster
richer, more substantive discussions. CollabCoder supports this goal through three
key features.

1. Documenting Decision-making Rationale. In Phase 1, CollabCoder allows users to
select keywords, phrases, and their coding certainty as supporting evidence. These
highlighted elements can represent pivotal factors influencing the user’s coding
decision. CollabCoder further facilitates users in rating their certainty for each code
on a scale from 1 (least certain) to 5 (most certain) to mark the ambiguity.

2. Side-by-Side Comparison in A Shared Workspace. Building on DG6’s emphasis on establishing
common ground, CollabCoder presents all users’ coding information for the relevant

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

109

data units side-by-side. This display includes the original data units, supporting
keywords, and indicators of labeled certainty scores. This layout facilitates direct
comparison and nuanced discussions.

3. Identifying (Dis)agreements. CollabCoder simplifies the process of spotting (dis)agreements
by calculating the Similarity of the code pair of each unit. This analysis can be
executed in 3-10 seconds for all data units. Similarity scores for code pairs range
from 0 (low similarity) to 1 (high similarity). For ease of interpretation, these scores
can be sorted in descending order, with higher scores indicating stronger agreements.

LLMs as a Group Recommender System

In alignment with DG7, our aim is to foster cost-effective and equitable coding outcomes
utilizing LLMs. CollabCoder achieves this by serving as an LLM-based group recommender
system (Jameson, Baldes, and Kleinbauer, 2003): when users struggle to finalize a code,
CollabCoder proposes three code decision suggestions specific to the code pair, taking
into account the raw data, codes from each user, keywords support, and certainty
scores. Users can then select and customize these suggestions to reach a conclusive
coding decision.

Formation of LLMs-based Code Groups

Consistent with DG8, our objective is to optimize the process of code group creation
to enhance efficiency. To this end, CollabCoder introduces the Code Group interface to
provide two key functions:

1. Accessing Original Data via the Final Code Decision List. CollabCoder streamlines final
code decisions, presenting them on the right-hand side of the interface. Hovering
over a code reveals its originating raw data. Additionally, by double-clicking on an
item within the code decision list, users can amend it, and the corresponding codes
are updated accordingly.

2. Managing Code Groups. With CollabCoder, users can effortlessly craft, rename, or
delete code groups. They can drag codes from the decision list to a designated code
group or remove them. To save users the effort of building groups from scratch,
CollabCoder provides an option to enlist GPT’s help in organizing code decisions
into preliminary groupings. This offers a foundation that users can then adjust,
rename, or modify.

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

110

6.3.3 Prompts Design

CollabCoder leverages OpenAI’s ChatGPT model (gpt-3.5-turbo) 10 to provide code
and code group suggestions. Prompts we used are described in the following and all
prompts template are also listed in Appendix Table B.2, B.3 and B.4. To ensure code
suggestions have diversity without being overly random, the temperature parameter
is set at 0.7.

Phase 1: Code Suggestions Recommendation

To recommend code suggestions, GPT is asked to play the role of:
"A helpful qualitative analysis assistant, aiding researchers in developing codes that can

be utilized in subsequent stages, including discussions for creating codebooks and final coding
processes".

CollabCoder recommends two kinds of code suggestions by prompting GPT:
1 Descriptive codes for raw data.

Please create three general summaries for [text] (within six-words).
The six-word constraint was introduced after observing GPT’s tendency to generate

long summaries during testing. This limitation ensures that GPT delivers concise and
targeted code suggestions. By using "general", we want GPT to generate codes that are
not too specific to be reused.

2 Relevant codes derived from coding history. CollabCoder produces the three
most relevant codes from coding history using the following prompt:

Identify the top three codes relevant to this [text] from the following code list:
1. [Code]
2. [Code]...
Here is the format of the returned results:
1. code content
2. code content
3. code content.

Upon a user’s request, two prompts, original text and code list (specified in [text]
and [Code]) are sent to the OpenAI API, which generates three distinct code suggestions,
and the three most relevant codes from coding history. The responses for both parts
appear in a dropdown list when the user clicks on the editing cell, allowing for easy
selection.

Phase 2: Code Decisions Recommendation

To generate code decisions upon user request, we ask GPT to play the role of:

10https://platform.openai.com/docs/models/gpt-3-5

https://platform.openai.com/docs/models/gpt-3-5

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

111

"You are a helpful qualitative analysis assistant, aiding researchers in developing final codes
that can be utilized in subsequent stages, including final coding processes."

We then prompt GPT with:
Create three concise, non-repetitive, and general six-word code combinations for the [text]

using Code1 ([Code]) and Code2 ([Code])
Code1 and Code2 represent codes from Coder1 and Coder2 for the given raw data

unit ([text]).
To ensure GPT provides results in a consistent format, we added the format and

content requirements for the return results:
Here is the format of results:

Version1:
Version2:
Version3:

Requirements:
1. 6 words or fewer;
2. No duplicate words;
3. Be general;
4. Three distinct versions.

Phase3: Code Groups Recommendation

To facilitate the creation of primary groups, we ask GPT to play the role of:
"You are a helpful qualitative analysis assistant, aiding researchers in generating final code

groups/main themes based on the [Code list] provided, in order to give an overview of the main
content of the coding."

We prompt GPT with:
Organize the following codes into several thematic groups without altering the original

codes, and name each group:
1. [Code],
2. [Code]...

Here is the format of the results:
Group1: [theme],
1.[code],
2.[code],
3.[code].
...

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

112

6.3.4 System Implementation

Web Application

The front-end implementation makes use of the react-mui library11. Specifically, we
employed the DataGrid component12 to construct tables in both the "Edit" and "Compare"
interfaces, allowing users to input and compare codes. These tables auto-save user
changes through HTTP requests to the backend, storing data in the database to synchronize
progress among collaborators. For each data unit, users have their own code, keyword
supports, certainty levels, and codebook in the Edit interface, while sharing decisions
in the "Compare" interface and code groups in the "Codebook" interface. To prevent
users from viewing collaborators’ codes before editing is complete, we restrict access
to other coders’ codes and only show everyone’s progress in "Compare" interface. We
also utilized the foldable Accordion component13 to efficiently display code group lists
in the "Codebook" interface, where users can edit, drag and drop decision objects to
modify their code groups. The backend leverages the Express framework, facilitating
communication between the frontend and MongoDB. It also manages API calls to the
GPT-3.5 model and uses Python to calculate statistics such as similarities.

Data Pre-processing

We partitioned raw data from CSV and txt files into data units during the pre-processing
phase. At the sentence level, we segmented the text using common sentence delimiters
such as ".", "...", "!", and "?". At the paragraph level, we split the text using \n\n.

Semantic Similarity and IRR

In CollabCoder, the IRR is measured using Cohen’s Kappa14 and Agreement Rate. To
calculate Cohen’s Kappa, we used the "cohen_kappa_score" method from scikit-learn
package backend15. Cohen’s Kappa is a score between -1 (total disagreement) and +1
(total agreement). Subsequently, we calculate the Agreement Rate as a score between
0 and 1, by determining the percentage of code pairs whose similarity score exceeds 0.8,
indicating that the two coders agree on the code segment. We employ the sentence-transformers
package16 to determine the semantic similarity between pairs of code from two coders.

11https://mui.com/
12https://mui.com/x/react-data-grid/
13https://mui.com/material-ui/react-accordion/
14Cohen’s Kappa is a statistical measure used to evaluate the IRR between two or more raters, which

takes into account the possibility of agreement occurring by chance, thus providing a more accurate
representation of agreement than simply calculating the percentage of agreement between the raters.

15https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_
kappa_score.html

16https://www.sbert.net/

https://mui.com/
https://mui.com/x/react-data-grid/
https://mui.com/material-ui/react-accordion/
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
https://www.sbert.net/

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

113

6.4 User Evaluation

To evaluate CollabCoder and answer our research questions, we conducted a within-subject
user study involving 16 (8 pairs) participants who used two platforms: CollabCoder
and Atlas.ti Web, for qualitative coding on two sets of qualitative data.

The goal was to address the following research questions:

• RQ1. Can CollabCoder support qualitative coders conduct CQA effectively?

• RQ2. How does CollabCoder compare to currently available tools like Atlas.ti Web?

• RQ3. How can the design of CollabCoder be improved?

6.4.1 Participants and Ethics

We invited 16 participants with varying qualitative analysis experiences via public
channels and university email lists. We involve both experts and non-experts as lowering
the bar is particularly important for newcomers or early researchers who might confront
significant challenges in adhering to such rigorous workflow Richards and Hemphill,
2018; Cornish, Gillespie, and Zittoun, 2013. Among them, 2/16 participants identified
as experts, 3/16 considered themselves intermediate, 4/16 as beginners, and 7/16 had
no qualitative analysis experience (see details in Appendix Table B.5). Participants were
randomly matched, leading to the formation of 8 pairs (see Table 6.3). Each participant
received compensation of approximately $22.3 USD for their participation, based on
the total duration. The study protocol was approved by our local IRB, and the financial
compensation was based on the duration at the hourly rate also approved by our local
IRB.

6.4.2 Datasets

We established two criteria to select the datasets used for coding task: 1) the datasets
should not require domain-specific knowledge for coding, and 2) coders should be
able to derive a theme tree and provide insights iteratively. Accordingly, two datasets
containing book reviews on "Business" and "History" topics from the Books_v1_00

category of amazon_us_reviews dataset17 were selected. For each of them, we filtered
15 reviews to include only those with a character count between 400 and 700 and
removed odd symbols such as \ and
. The workload was determined through
pilot tests with some participants.

17https://huggingface.co/datasets/amazon_us_reviews/viewer/Books_v1_00/train

https://huggingface.co/datasets/amazon_us_reviews/viewer/Books_v1_00/train

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

114

6.4.3 Conditions

• Atlas.ti Web: a powerful platform for qualitative analysis that enables users to invite
other coders to collaborate by adding, editing, and deleting codes. It also allows for
merging codes and generating code groups manually.

• CollabCoder: the formal version of our full-featured platform.

The presentation order of both platforms and materials was counter-balanced across
participants using a Latin-square design (Lazar, Feng, and Hochheiser, 2017b).

6.4.4 Procedure

Each study was conducted virtually via Zoom and lasted around 2 to 3 hours. It
consisted of a pre-study questionnaire, training for novice participants, two qualitative
coding sessions with different conditional systems, a post-study questionnaire, and a
semi-structured interview.

Introduction to the Task

After obtaining consent, we introduced the task to the pairs of participants, which
involved analyzing reviews and coding them to obtain meaningful insights. We introduced
research questions they should take into account when coding, such as recurring themes
or topics, common positive and negative comments or opinions. We provided guidelines
to ensure that the coding was consistent across all participants. Participants were
permitted to use codes that were under 10 words in length, include multiple codes
for each data unit, and add both descriptive and in-vivo codes.

Specific Process

Following the introduction, we provided a video tutorial on how to use the platform
for qualitative coding. Participants first did independent coding, and then discussed
the codes they had found and made final decisions for each unit, ultimately forming
thematic groups. We urge them to engage in extensive discussions and to present code
groups that accurately reflect the valuable insights they have acquired, emphasizing
the importance of quality. To ensure they understand the study purpose better, participants
were shown sample code groups as a reference for the type of insights they should aim
to obtain from their coding. After completing the coding for all sessions, participants
were asked to complete a survey, which included a 5-level Likert Scale to rate the
effectiveness of two platforms, and self-reported feelings about the platforms.

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

115

Data Recording

During the process, we asked participants to share their screens and obtained their
consent to record the meeting video for the entire experiment. Once the coding sessions
were completed, participants were invited to participate in a post-study semi-structured
interview.

6.5 Results

6.5.1 RQ1: Can CollabCoder support qualitative coders to conduct CQA
effectively?

Key Findings (KF) on features that support CQA

KF1: CollabCoder workflow simplifies the learning curve for CQA and ensures coding
independence in the initial stages. Overall, users found CollabCoder to be better as
it supports side-by-side comparison of data, which makes the coding and discussion
process easier to understand (P2), more straightforward (P7), and beginner-friendly
(P4) than Atlas.ti Web, and P4 noted that CollabCoder had a lower learning curve.

Moreover, CollabCoder workflow preserves coding independence. Experienced
users (P11 and P14), familiar with qualitative analysis, find CollabCoder’s independent
coding feature to be particularly beneficial: "So you don’t see what the other person is
coding until like both of you are done. So it doesn’t like to affect your own individual coding...[For
Atlas.ti Web] the fact like you can see both persons’ codes and I think I’m able to edit the
other person’s codes as well, which I think might not be very a good practice." Similarly, P14
indicated: "I think CollabCoder is better if you aim for independent coding."

KF2: Individual workspace with GPT assistance is valued for reducing cognitive
burden in Phase 1. CollabCoder makes it easier for beginner users to propose and
edit codes compared to Atlas.ti Web. 7/16 participants appreciated that GPT’s additional
assistance (P7, P15), which gave them reference (P1) and decreased thinking (P9). Such
feelings are predominantly reported by individuals who are either beginners or lack
prior experience in qualitative analysis. As P13 said, "I think the CollabCoder one is
definitely more intuitive in a sense, because it provides some suggestion, you might not use
it, but at least some basic suggestions, whereas the Atlas.ti one, you have to take from scratch
and it takes more mental load." (P13).

Some of these beginners also showed displeasure towards GPT, largely stemming
from its content summarization level, which users cannot regulate. P1 (beginner) found
that in certain instances, CollabCoder generated highly detailed summaries which
might not be well-suited to their requirements, leading them to prefer crafting their

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

116

own summaries: "One is that its summary will be very detailed, and in this case, I might
not use its result, but I would try to summarize [the summary] myself." This caused them
to question AI’s precision and appropriateness for high-level analysis, especially in the
context of oral interviews or focus groups.

In addition, when adding codes, our participants indicated that they preferred
reading the raw data first before looking at the suggestions, as they believed that
reading the suggestions first could influence their thinking process (P1, P3, P4, P14)
and introduce bias into their coding: "So I read the text at first. it makes more sense,
because like, if you were to solely base your coding on [the AI agent], sometimes its suggestions
and my interpretation are different. So it might be a bit off, whereas if you were to read the text,
you get the full idea as to what the review is actually talking about. The suggestion functions
as a confirmation of my understanding." (P4)

KF3: Pre-defined data units, documented decision-making mechanisms, and progress
bar features collectively enhance mutual understanding in Phase 1 and Phase 2.
Regarding collaboration, users found that having a pre-defined unit of analysis enabled
them to more easily understand the context: "I am able to see your quotations. Basically
what they coded is just the entire unit. But you see if they were to code the reviews based
on sentences, I wouldn’t actually do the hard work based on which sentence he highlighted.
But for CollabCoder, I am able to see at a glance, the exact quotations that they did. So it
gives me a better sense of how their codes came about." (P3) Moreover, users emphasized
the importance of not only having the quotation but also keeping its context using
pre-defined data units, as they often preferred to refer back to the original text. This
is because understanding the context is crucial for accurate data interpretation and
discussion: "I guess, it is because like we’re used to reading a full text and we know like the
context rather than if we were to read like short extracts from the text. the context is not fully
there from just one or two line [quotations]." (P9)

Users also appreciated CollabCoder’s keywords-support function, as it aided them
in capturing finer details (P9) and facilitated a deeper understanding of the codes
added: "It presents a clearer view about that paragraph. And then it helps us to get a better
idea of what the actual correct code should be. But since the other one [Atlas.ti Web] is [...] a
little bit more like superficial, because it’s based solely on two descriptive words." (P14)

The progress bar feature in CollabCoder was seen as helpful when collaborating
with others. It allowed them to manage their time better and track the progress of
each coder. "I actually like the progress bar because like that I know where my collaborators
are." (P8) Additionally, it acted as a tracker to notify the user if they missed out on a
part, which can help to avoid errors and improve the quality of coding. "So if say, for
example, I missed out one of the codes then or say his percentage is at 95% or something like
that, then we will know that we missed out some parts" (P3)

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

117

All the above features collectively improve the mutual understanding between coders,
which can decrease the effort devoted to revisiting the original data and recalling their
decision-making processes, and deepen discussions in a limited time.

KF4: The shared workspace with metrics allows coders to understand disagreements
and initiate discussions better in Phase 2. In terms of statistics during the collaboration,
the similarity calculation and ranking features enable users to quickly identify (dis)agreements
(P2, P3, P7, P10, P14) to ensure they focus more (P4). As P14 said, "I think it’s definitely
a good thing [to calculate similarity]. From there, I think we can decide whether it’s really a
disagreement on whether it’s actually two different information captured in the two different
codes." Moreover, the identification of disagreements is reported to pave the way for
discussion (P1, P8): "So I think in that sense, it just opens up the door for the discussion
compared to Atlas.ti...[and]better in idea generation stands and opening up the door for discussion."
(P8) In contrast, Atlas.ti necessitated more discussion initiation on the part of users.

Nevertheless, ranking similarity using CollabCoder might have a negative effect, as
it may make coders focus more on improving their agreements instead of providing a
more comprehensive data interpretation: "I think pros and cons. because you will feel like
there’s a need to get high similarity on every code, but it might just be different codes. So there
might be a misinterpretation." (P7)

The participants had mixed opinions regarding the usefulness of IRR in the coding
process. P9 found Cohen’s kappa useful for their report as they do not need to calculate
manually: "I think it’s good to have Cohen’s Kappa, because we don’t have to manually
calculate it, and it is very important for our report. " However, P6 did not consider the
statistics to be crucial in their personal research as they usually do coding for interview
transcripts. "Honestly, it doesn’t really matter to me because in my own personal research, we
don’t really calculate. Even if we have disagreements, we just solve it out. So I can’t comment
on whether the statistics are relevant, right from my own personal experience." (P6)

KF5: The GPT-generated primary code groups in Phase 3 enable coders to have
a reference instead of starting from scratch, thereby reducing cognitive burden.
Participants expressed a preference for the automatic grouping function of CollabCoder,
as it was more efficient (P1, P2, P8, P14) and less labor-intensive (P3), compared
to the more manual approach in Atlas.ti Web. In particular, P14 characterized the
primary distinction between the two platforms as Atlas.ti Web adopts a "bottom-up
approach" while CollabCoder employs a "top-down approach". In this context, the
"top-down approach" refers to the development of "overall categories/code groups"
derived from the coding decisions made in Phase 2, facilitated by GPT. This approach
allows users to modify and refine elements within an established primary structure
or framework, thereby eliminating the need to start from scratch. Conversely, the

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

118

"bottom-up approach" means generating code groups from an existing list, through
a process of reviewing, merging, and grouping codes with similar meanings. This
difference impacts the mental effort required to create categories and organize codes.
"I think it’s different also because Atlas.ti is more like a bottom-top approach. So we need to
see through the primary codes to create the larger categories which might be a bit more tedious,
because usually, they are the primary codes. So it’s very hard to see an overview of everything
at once. So it takes a lot of mental effort, but for CollabCoder, it is like a top-down approach.
So they [AI] create the overall categories. And then from there, you can edit and then like shift
things around which helps a lot. So I also prefer CollabCoder." (P14) P1 also highlighted
that this is particularly helpful when dealing with large amounts of codes, as manually
grouping them one-by-one becomes nearly unfeasible.

Key Findings (KF) on collaboration behaviors with CollabCoder supports

KF6: An analysis of three intriguing group dynamics manifested in two conditions
In addition to the key findings on feature utilization, we observed three intriguing
collaboration group dynamics, including "follower-leader" (P1×P2, P5×P6), "amicable
cooperation" (P3×P4, P7×P8, P9×P10, P13×P14, P15×P16) and "swift but less cautious"
(P11×P12). The original observation notes are listed in Appendix Table B.6 and B.7.

The "follower-leader" pattern typically occurred when one coder was a novice, while
the other had more expertise. Often, the inexperienced coder contributed fewer ideas
or only offered support during the coding process: when using Atlas.ti Web, those
"lead" coders tended to take on more coding tasks than the others since their coding
tasks could not be precisely quantified. Even though both of them were told to code all
the data, it would end up in a situation where one coder primarily handled the work
while the other merely followed with minimal input. This pattern could also appear if
the coders worked at different paces (P1×P2). As a result, the more efficient coders
expressed more ideas. In contrast, CollabCoder ensures equitable participation by
assigning the same coding workload to each participant and offering detailed documentation
of the decision-making process via its independent coding interface. This approach
guarantees that coders, even if they seldom voice their opinions directly, can still use
the explicit documented information to communicate their ideas indirectly and be assessed
in tandem with their collaborators. Furthermore, the suggestions generated by GPT are
derived from both codes and raw data, producing a similar effect.

For "amicable cooperation", the coders respected each other’s opinions while employing
CollabCoder as a collaborative tool to finalize their coding decisions. When they make
a decision, they firstly identify the common keywords between their codes, and then
check the suggestions with similar keywords to decide whether to use suggestions or
propose their own final code decision. Often, they took turns to apply the final code.

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

119

For example, for the first data unit, one coder might say, "hey, mine seems better, let’s use
mine as the final decision," and for the second one, the coder might say, "hey, I like yours,
we should choose yours [as the final decision]" (P3×P4). In some cases, such as P13×P14,
both coders generally reach a consensus, displaying no strong dominance and showing
respect for each other’s opinions, sometimes it is challenging to finalize a terminology
for the code decision. Under this kind of condition, the coders used an LLMs agent as
a mediator to find a more suitable expression that takes into account both viewpoints.
Although most groups maintained similar "amicable cooperation" dynamics in Atlas.ti
Web sessions, some found it challenging to adhere to their established patterns. This
difficulty is attributed to the fact that such patterns are more resource-intensive. Take
the P7×P8 scenario as an example: in this case, the participants encountered time
management challenges, as each coding session was initially scheduled to conclude
within half an hour. Participants were afforded some flexibility, allowing sessions
to extend slightly beyond the initially planned duration to ensure the completion of
their tasks. In the CollabCoder condition, they engaged in extensive and respectful
discussions, which consequently reduced the time available for the Atlas.ti Web session.
Consequently, they had to expedite the process in Atlas.ti Web. This rush resulted in
a situation where only one coder assumed the responsibility of merging the codes and
rapidly grouping them into thematic clusters. For this coder, to access deeper insights
behind these codes, additional operations like asking why another coder has this code,
and clicking more to understand which sentence it means were often not feasible within
the time constraints. This absence of operations forced coders to merge data relying
solely on codes, without the advantage of additional contextual insights. Consequently,
this approach often leads to a "follower-leader" or "leader-takes-all" dynamic. While
this simplifies the process for participants, it potentially compromises the quality of
the discussion. This is also evidenced by our quantitative data in Table 6.3.

The "swift but less cautious" collaboration was a less desirable pattern we noticed:
For P11×P12, during the merging process, they would heavily rely on GPT-generated
decisions in order to finish the task quickly. This scenario highlights the concerns
regarding excessive reliance on GPT and insufficient deep thinking, which can negatively
impact the final quality even when GPT is used as a mediator after the codes have
been produced, as defined as our initial objective. Under this pattern, the pair sadly
used GPT for "another round of coding" rather than as a neutral third-party decision
advice provider. In the case of this particular pair working with Atlas.ti Web, a distinct
pattern emerged: P11 exhibited a notably faster pace, while P12 worked more slowly.
As a result, the collaboration between the participants evolved into a "follower-leader"
dynamic. In this structure, the quicker participant, P11, appeared to steer the overall
process, occasionally soliciting inputs from P12.

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

120

Atlas.ti Web CollabCoderI find it effective to...

I feel confident/prefer...

produce final code groups

identify disagreements
understand others’ thoughts

resolve disagreements and make decisions
understand the current level of agreement

come up with codes

final quality confidence
level of preference

level of control
level of understanding

learn to use quickly
easy to use

FIGURE 6.8: Post-study Questionnaires Responses from Our
Participants on Different Dimensions on A 5-point Likert Scale,
where 1 denotes "Strongly Disagree", 5 denotes "Strongly Agree". The
numerical values displayed on the stacked bar chart represent the count

of participants who assigned each respective score.

6.5.2 RQ2. How does CollabCoder compare to currently available tools like
Atlas.ti Web?

Post-study questionnaire

We gathered the subjective preferences from our participants. To do so, we gave them
12 statements like "I find it effective to..." and "I feel confident/prefer..." pertaining to the
effectiveness and self-perception. We then asked them to rate their agreement with each
sentence on a 5-point Likert scale for each platform. The details of the 12 statements
are shown in Figure 6.8.

Overall, pairwise t-tests showed that participants rated CollabCoder significantly
(all p < .05) better than Atlas.ti Web for effectiveness in 1) coming up with codes, 2)
producing final code groups, 3) identifying disagreements, 4) resolving disagreements and
making decisions, 5) understanding the current level of agreement, and 6) understanding
others’ thoughts. The results also indicated that participants believed CollabCoder (M =

4) could be learned for use quickly compared to Atlas.ti Web (M = 3.1, t(15) = −3.05, p <

.01). For other dimensions, the confidence in the final quality, perceived level of preference,
level of control, level of understanding, and ease of use, while our results show a general
trend where CollabCoder achieves higher scores, we found no significant differences.
Additionally, we observed that one expert user (P6) exhibited a highly negative attitude
towards implementing AI in qualitative coding, as he selected "strongly disagree" for
nearly all the assessment criteria. We will discuss his qualitative feedback in Section
6.6.2.

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

121

Log data analysis

A two-tailed pairwise t-test on Discussion Time revealed a significant difference (t(15) =
−3.22, p = .017) between CollabCoder (M ≈ 24mins, SD ≈ 7mins) and Atlas.ti Web
(M ≈ 11mins, SD ≈ 5.5mins). Discussions under the CollabCoder condition were
significantly longer than those in the Atlas.ti Web condition. When examining the
IRR, it was found that the IRRs in the Atlas.ti Web condition were overall significantly
(t(7) = −6.69, p < .001) lower (M = 0.06, SD = 0.40), compared to the CollabCoder
condition (M ≈ 1). In the latter, participants thoroughly examined all codes, resolved
conflicts, merged similar codes, and reached a final decision for each data unit. Conversely,
Atlas.ti Web posed challenges in comparing individual data units side-by-side, leading
to minimal code discussions overall (averaging 4.5 codes discussed) compared to the
CollabCoder option (averaging 15 codes discussed). Consequently, we surmise that
concealed disagreements within Atlas.ti Web might require additional discussion rounds
to attain a higher agreement level. Further evidence is needed to validate this assumption.

6.5.3 RQ3. How can the design of CollabCoder be improved?

While CollabCoder effectively facilitates collaboration in various aspects, as discussed
in Section 6.5.1, we observed divergent attitudes toward certain functions, such as
labeling certainty, relevant code suggestions, and the use of individual codebooks.

Most participants expressed concerns about the clarity, usefulness, and importance
of the certainty function in CollabCoder. The self-reported nature, the potential of
inconsistencies in reporting, and minimal usage among users suggest that the certainty
function may not be as helpful as intended. For example, P12 found the certainty
function "not really helpful", and P13 admitted forgetting about it due to the numerous
other subtasks in the coding process. P3 also reported limited usage of the function,
mainly assigning low certainty scores when not understanding the raw data. However,
P14 recognized that the certainty function could be helpful in larger teams, as it might
help flag quotes that require more discussion.

The perceived usefulness of the relevant code function in CollabCoder depends on
the dataset and users’ preferences. Some participants found it less relevant than the AI
agent’s summary function, which they considered more accurate and relevant. "Maybe
not that useful, but I think it depends on your dataset. Say whether they are many similar data
points or whether they are different data points. So I think in terms of these cases they are all
very different, have a lot of different contents. So it’s not very relevant, but definitely, I think,
in datasets which might be more relevant, could be useful." (P2)

As for the individual codebook function, although users acknowledged its potential
usefulness in tracking progress and handling large datasets, most users "did not pay
much attention to it during this coding process" (P2, P3, P4). P3 found it helpful for tracking

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

122

progress but did not pay attention to it during this particular process. P4 acknowledged
that the function could be useful in the long run, particularly when dealing with a large
amount of data.

While these features may not be as useful as initially anticipated, evidenced by low
usage frequency or varying effectiveness across different datasets, further investigation
is necessary to ascertain if the needs and challenges associated with these features truly
exist or are merely perceived by us. This could significantly enhance user experiences
with CollabCoder and inform the future design of AI-assisted CQA tools.

6.6 Discussion and Design Implications

We discuss users’ feedback on various features, as well as the potential role that LLMs
could play in the CQA workflow.

6.6.1 Facilitating Rigorous, Lower-barrier CQA Process through Workflow
Design Aligned with Theories

Practically, CollabCoder contributes by providing a one-stop, end-to-end workflow
that ensures seamless data transitions between stages with minimal effort. This design
is grounded in qualitative analysis theories such as Grounded Theory (Flick, 2013) and
Thematic Analysis (Maguire and Delahunt, 2017), as outlined in Section ??, facilitating
a rigorous yet accessible approach to CQA practice. While spreadsheets are also capable
of similar processes, they typically demand considerable effort and struggle to uphold
a stringent process due to the intricacy and nuances involved. CollabCoder, in contrast,
streamlines these tasks, rendering the team coordination process (Entin, 2000; Malone
and Crowston, 1994) more practical and manageable. Our evaluation demonstrates the
effectiveness of CollabCoder, empowering both experienced practitioners and novices
to perform rigorous and comprehensive qualitative analysis.

Apart from practical benefits, our CollabCoder design (Cash, 2018) can also enrich
theoretical understanding in the CQA domain (Jörg Hecker, 2023), which aids practitioners
in grasping foundational theories, thereby bolstering the credibility of qualitative research
(Collins and Stockton, 2018; Jörg Hecker, 2023). Over the years, CQA practices have
remained inconsistent and vague, particularly regarding when and how multiple coders
may be involved, the computation of IRR, the use of individual coding phases, and
adherence to existing processes (Bradley, 1993; Noble and J. Smith, 2015). A common
question could arise: "If deviating from strict processes does not significantly impact results,
or the influence is hard to perceive (at least from others’ perspective), why should substantial
time be invested in maintaining them, especially under time constraints?" Current software
like Atlas.ti, MaxQDA often neglects this critical aspect in their system design, focusing

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

123

instead on basic functionalities like data maintenance and code addition, which, are
not the most challenging parts of the process for practitioners. Ultimately, CollabCoder
enables practitioners to conduct a CQA process that is both transparent and standardized
within the community (Noble and J. Smith, 2015; Moravcsik, 2014). Looking forward,
we foresee a future where coders, in documenting their methodologies, will readily
reference their use of such specifically designed workflows or systems for CQA analysis.

With this in mind, our objective is not to position any single method as the definitive
standard in this field. Although CollabCoder is specifically designed for one type of
coding — consensus coding within inductive coding — we do not exclusively advocate
for either consensus or split coding. Instead, we emphasize that coders should choose
a method that aligns best with their data and requirements (Teherani et al., 2015; Jörg
Hecker, 2023; Grad Coach, 2023; Collins and Stockton, 2018). Therefore, the design of
such tools should aim to accommodate various types of qualitative analysis methods.
For instance, split coding might necessitate distributing data among team members in
a manner that differs from the uniform distribution required by consensus coding.

6.6.2 LLMs as “Suggestion Provider” in Open Coding: Helper, not Replacement.

Utilizing LLMs to Reduce Cognitive Burden

Independent open coding is a highly cognitively demanding task, as it requires understanding
the text, identifying the main idea, creating a summary based on research questions,
and formulating a suitable phrase to convey the summary (Lazar, Feng, and Hochheiser,
2017b; J. Corbin and Strauss, 2008). Additionally, there is the need to refer to and reuse
previously created codes. In this context, GPT’s text comprehension and generation
capabilities can assist in this mentally challenging process by serving as a suggestion
provider.

Improving LLMs’ Suggestions Quality

However, a key consideration according to KF2 is how GPT can provide better quality
suggestions that align with the needs of users. For CollabCoder, we only provided
essential prompts such as "summary" and "relevant codes". However, a crucial aspect
of qualitative coding is that coders should always consider their research questions
while coding and work towards a specific direction. For instance, are they analyzing
the main sentiment of the raw data or the primary opinion regarding something? This
factor can significantly impact the coding approach (e.g., descriptive or in-vivo coding (Saldaña,
2021)) and what should be coded (e.g., sentiment or opinions). Therefore, the system
should support mechanisms for users to inform GPT of the user’s intent or direction.
One possible solution is to include the research question or intended direction in the

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

124

prompt sent to GPT alongside the data to be coded. Alternatively, users could configure
a customized prompt for guidance, directing GPT’s behavior through the interface (Ippolito
et al., 2022). This adaptability accommodates individual preferences and improves the
overall user experience.

Looking ahead, as the underlying LLM evolves, we envision that an approach for
future LLM assistance in CollabCoder involves: 1) creating a comprehensive library
of both pre-set and real-time updated prompts, designed to assist in suggesting codes
across diverse fields like psychology and HCI; 2) implementing a feature that allows
coders to input custom prompts when the default prompts are not suitable.

LLMs should Remain a Helper

Another key consideration is how GPT can stay a reliable suggestion provider without
taking over from the coder (J. A. Jiang et al., 2021; Marathe and Toyama, 2018a). Our
study demonstrated that both novices and experts valued GPT’s assistance, as participants
used GPT’s suggestions either as code or as a basis to create codes 76.67% of the time
on average.

However, one expert user (P6) held a negative attitude towards employing LLMs
in open coding, assigning the lowest score to nearly all measures (see Figure 6.8). This
user expressed concerns about the role of AI in this context, suggesting that qualitative
researchers might feel forced to use AI-generated codes, which could introduce potential
biases. Picking up the nuances from the text is considered "fun" for qualitative researchers
(P6), and suggestions should not give the impression that "the code is done for them and
they just have to apply it" (P6) or lead them to "doubt their own ideas" (P5).

On the other side, it is important not to overlook the risk of over-reliance on GPT.
While we want GPT to assist, we do not intend for it to fully replace humans in the
process, as noted in DG5. Our observations revealed that although participants claimed
they would read the raw data first and then check GPT’s suggestions, some beginners
tended to rely on GPT for forming their suggestions, and experts would unconsciously
accept GPT’s suggestions if unsure about the meaning of the raw data, in order to save
time. Therefore, preserving the enjoyment of qualitative research and designing for
appropriate reliance (J. D. Lee and See, 2004) to avoid misuse (Dzindolet et al., 2003) or
over-trust can be a complex challenge (Xiao et al., 2023). To this end, mixed-initiative
systems (J. Allen, Guinn, and Horvtz, 1999; Horvitz, 1999) like CollabCoder can be
designed to allow for different levels of automation. For example, GPT-generated
suggestions could be provided only for especially difficult cases upon request, rather
than being easily accessible for every unit, even when including a pre-defined time
delay.

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

125

6.6.3 LLMs as “Mediator” and “Facilitator” in Coding Discussion

Among the three critical CQA phases we pinpointed, aside from the open coding
phase, the subsequent two stages — Phase 2 (merge and discussion) and Phase 3 (development
of a codebook) — require a shared workspace for coders to converse. We took note of
the role LLMs undertook during these discussions.

LLMs as a “Mediator” in Group Decision-Making.

The challenge of dynamically reaching consensus — a decision that encapsulates the
perspectives of all group members — has garnered attention in the HCI field (Emamgholizadeh,
2022; Pérez et al., 2018; J. A. Jiang et al., 2021). Jiang et al. (J. A. Jiang et al., 2021)
extensively explore collaborative dynamics in their research for qualitative analysis.
They highlighted decision-making modes in consensus-building may vary under different
power dynamics (Interaction Institute for Social Change, 2018) in CQA context. In
some cases, the primary author or a senior member of a project may assume the decision-making
role. According to our KF6, we also found interesting group dynamics, identifying
patterns like "amicable cooperation", "follower-leader", and "swift but less cautious"
modes. Our design positions GPT as a mediator or a group recommendation system
(Emamgholizadeh, 2022), particularly useful when consensus is hard to reach. In this
role, GPT acts as an impartial facilitator, aiding in harmonizing labor distribution and
opinion expression. It guides groups towards decisions that are not only cost-effective
but also equitable, justified, and sound (L. Chen et al., 2013). This is a functionality that
can hardly be achieved by using tools like Atlas.ti Web. In fact, these group dynamics
can also be explored through various lenses, such as the Thomas-Kilmann conflict
modes (Thomas, 2008), which emphasize the importance of balancing assertiveness
and cooperativeness in a team. Delving into these theories can significantly aid in the
design of more effective team collaboration tools.

Nonetheless, CollabCoder’s present design in Phase 2, which employs LLMs as a
recommendation system for coding decisions, represents merely an initial step. While
the CollabCoder cannot fundamentally alter collaborative power dynamics, it ensures
that coding is a collaborative effort, emphasizing substantive discussions between two
coders to avoid superficial collaboration. Looking ahead, there are numerous paths we
could and should pursue. For example, as humans should be the ultimate decision-makers,
with GPT serving merely as a fair mediator between coders, group decision recommendations
ought to be made available only upon explicit request. Alternatively, once a coder puts
forth a final decision, GPT could then refine the wording or formulate some conclusive
description to facilitate future reflection on the code decisions (Barry et al., 1999).

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

126

LLMs as “Facilitator” in Streamlining Primary Code Grouping

As per KF5, our participants offered insightful feedback about using GPT to generate
primary code groups. They found the top-down approach, where GPT first generates
primary groups and users subsequently refine and revise them, more efficient and
less cognitively demanding compared to the traditional bottom-up method. In the
traditional method, users must begin by examining all primary codes, merging them,
and then manually grouping them into categories, which can be mentally taxing. Differently,
CollabCoder is designed to initially formulate primary or coarse ideas about how to
group codes. Similar to many types of recommendation systems, the suggestions provided
by CollabCoder are intended to complement the coders’ initial thoughts on code grouping.
When coders review these GPT-suggested code groups, it enables them to reflect upon
and compare their own ideas with the given suggestions. This process enriches the
final code groups by efficiently incorporating a wider range of perspectives, extending
beyond the insights of just the two coders. This ensures a more comprehensive and
multifaceted categorization. Moreover, researchers can more effectively and easily
manage large volumes of data and potentially enhance the quality of their analysis.

However, it is crucial to exercise caution when applying this method. We observed
that when time constraints exist, coders may skip discussions, with only one of two
coders combining and categorizing the codes into code groups (P7×P8). Additionally,
P14 mentioned that GPT appears to dominate the code grouping process, resulting in
a single approach to grouping. For instance, while the participants might create code
groups based on sentiment analysis during their own coding process, they could be
tempted to focus on content analysis under GPT’s guidance.

Similarly, to overcome these challenges of CollabCoder, we envision a system where
coders would create their own groupings first and only request LLMs’ suggestions
afterward. Alternatively, LLMs’ assistance could be limited to situations where the data
volume is substantial. Another approach could be prompting LLMs to generate code
groups based on the research questions rather than solely on the (superficial) codes.
This would ensure a more contextually relevant and research-driven code grouping
process.

6.7 Limitations and Future Work

This work has limitations. Firstly, it’s important to note that the current version of
CollabCoder operates under certain assumptions, deeming coding tasks as "ideal"—comprising
semantically independent units, a two-person coding team, and data units with singular
semantics. However, our expert interviews revealed a more complex reality. One
primary source of disagreement arises when different users assign multiple codes to

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

127

the same data unit, often sparking discussions during collaborative coding. Future
research should aim to address this point.

Secondly, we only used pre-defined unit data and did not consider splitting complex
data into units (e.g., interview data). Future work could explore utilizing GPT to
support the segmentation of interview data into semantic units and automating the
import process.

Lastly, we did not investigate the specific process by which users select and edit a
GPT suggestion. Future research could delve deeper into how users incorporate these
suggestions to generate a final idea. Moreover, for a tool that could be used by the
same coder on multiple large datasets, it would also be beneficial to have GPT generate
suggestions based on users’ coding patterns rather than directly providing suggestions.

6.8 Conclusion

This paper introduces CollabCoder, a system that integrates the key stages of the CQA
process into a one-stop workflow, aiming to lower the bar for adhering to a strict CQA
procedure. Our evaluation with 16 participants indicated a preference for CollabCoder
over existing platforms like Atlas.ti Web due to its user-friendly design and AI assistance
tailored for collaboration. We also demonstrated the system’s capability to streamline
facilitate discussions and consensus-building, and create codebooks. By examining
both human-AI and human-human interactions within the context of qualitative analysis,
we have uncovered key challenges and insights that can guide future design and research.

Chapter 6. Building A Lower-barrier, Rigorous Workflow for Collaborative
Qualitative Analysis with Large Language Models

128

TA
B

L
E

6.
3:

O
ve

rv
ie

w
of

th
e

fin
al

co
di

ng
re

su
lt

s.
"C

ol
la

b.
"

de
no

te
s

C
ol

la
bC

od
er

,
"A

tl
as

."
de

no
te

s
A

tl
as

.ti
W

eb
,

"T
ot

al
C

od
es

"
de

no
te

s
th

e
to

ta
l

nu
m

be
r

of
co

de
s

ge
ne

ra
te

d
w

hi
le

"D
is

cu
ss

ed
C

od
es

"
de

no
te

s
th

e
to

ta
l

nu
m

be
r

of
co

de
s

th
at

w
er

e
di

sc
us

se
d

by
th

e
co

de
rs

du
ri

ng
th

e
di

sc
us

si
on

ph
as

e.
"B

us
."

de
no

te
s

th
e

"B
us

in
es

s"
da

ta
se

tw
hi

le
"H

is
."

de
no

te
s

th
e

"H
is

to
ry

"
da

ta
se

t.
"S

ug
ge

st
io

ns
A

cc
ep

ta
nc

e"
co

lu
m

n
de

no
te

s
th

e
pr

op
or

ti
on

of
us

ag
e

of
G

PT
-g

en
er

at
ed

co
de

s
(G

PT
),

th
e

se
le

ct
io

n
fr

om
th

e
re

le
va

nt
co

de
s

in
co

de
hi

st
or

y
su

gg
es

te
d

by
G

PT
(R

el
e.

),
an

d
us

er
s’

se
lf

-p
ro

po
se

d
co

de
s

(S
el

f.)
to

th
e

to
ta

ln
um

be
r

of
op

en
co

de
s

in
Ph

as
e

1.
"G

PT
-b

as
ed

C
od

e
D

ec
is

io
ns

"
co

lu
m

n
re

fle
ct

s
th

e
pr

op
or

ti
on

of
co

de
de

ci
si

on
s

in
Ph

as
e

2
th

at
or

ig
in

at
ed

fr
om

su
gg

es
ti

on
s

m
ad

e
by

th
e

G
PT

m
ed

ia
to

r.

Pa
ir

s
Se

lf
-r

ep
or

te
d

Q
A

ex
pe

rt
is

e
C

on
di

ti
on

s
C

ol
la

bo
ra

ti
on

O
bs

er
va

ti
on

To
ta

lC
od

es
D

is
cu

ss
ed

C
od

es
(N

o.
)

IR
R

(-
1

to
1)

C
od

e
G

ro
up

s
(N

o.
)

D
is

cu
ss

io
n

Ti
m

e
(m

in
s:

se
cs

)
Su

gg
es

ti
on

s
A

cc
ep

ta
nc

e
in

Ph
as

e
1

(%
)

G
PT

-B
as

ed
C

od
e

D
ec

is
io

ns
(%

)
C

ol
la

b.
A

tl
as

.
C

ol
la

b.
A

tl
as

.
C

ol
la

b.
b

A
tl

as
.

C
ol

la
b.

A
tl

as
.

C
ol

la
b.

A
tl

as
.

G
PT

R
el

e.
Se

lf
.

P1
Be

gi
nn

er
A

tl
as

.(
Bu

s.
),

C
ol

la
b.

H
is

.)
Fo

llo
w

er
-

Le
ad

er
15

24
15

6
N

A
-0

.0
7

6
3

19
:4

1
07

:3
9

10
0

0
0

5
P2

N
o

Ex
pe

ri
en

ce
70

5
25

P3
Ex

pe
rt

C
ol

la
b.

(B
us

.),
A

tl
as

.(
H

is
.)

A
m

ic
ab

le
C

oo
pe

ra
ti

on
15

10
15

10
N

A
1

5
4

35
:2

4
21

:3
2

90
0

10
40

P4
N

o
Ex

pe
ri

en
ce

90
0

10
P5

N
o

Ex
pe

ri
en

ce
A

tl
as

.(
H

is
.),

C
ol

la
b.

(B
us

.)
Fo

llo
w

er
-

Le
ad

er
15

11
15

2
N

A
-0

.0
2

5
2

17
:5

5
06

:1
6

73
7

20
10

0
P6

Ex
pe

rt
10

0
0

0
P7

N
o

Ex
pe

ri
en

ce
C

ol
la

b.
(H

is
.)

A
tl

as
.(

Bu
s.

)
A

m
ic

ab
le

C
oo

pe
ra

ti
on

15
22

15
2

N
A

-0
.3

3
7

6
29

:0
8

N
o

di
sc

us
si

on
a

7
0

93
80

P8
N

o
Ex

pe
ri

en
ce

13
7

80
P9

In
te

rm
ed

ia
te

A
tl

as
.(

Bu
s.

),
C

ol
la

b.
(H

is
.)

A
m

ic
ab

le
C

oo
pe

ra
ti

on
15

17
15

5
N

A
0.

04
5

2
15

:1
1

14
:3

8
73

13
13

80
P1

0
N

o
Ex

pe
ri

en
ce

53
40

7
P1

1
In

te
rm

ed
ia

te
C

ol
la

b.
(B

us
.),

A
tl

as
.(

H
is

.)
Q

ui
ck

an
d

no
tc

ar
ef

ul
15

61
15

2
N

A
-0

.0
7

3
3

19
:2

3
14

:1
5

10
0

0
0

10
0

P1
2

N
o

ex
pe

ri
en

ce
10

0
0

0
P1

3
Be

gi
nn

er
A

tl
as

.(
H

is
.),

C
ol

la
b.

(B
us

.)
A

m
ic

ab
le

C
oo

pe
ra

ti
on

15
30

15
5

N
A

-0
.0

8
8

2
29

:1
9

08
:4

3
87

7
7

10
0

P1
4

In
te

rm
ed

ia
te

93
0

7
P1

5
Be

gi
nn

er
C

ol
la

b.
(H

is
.)

A
tl

as
.(

Bu
s.

)
A

m
ic

ab
le

C
oo

pe
ra

ti
on

15
8

15
4

N
A

0.
04

4
2

29
:0

9
08

:5
2

10
0

0
0

43
P1

6
N

o
ex

pe
ri

en
ce

73
20

7
M

ea
n

15
22

.8
8

15
4.

5
N

A
0.

06
5.

38
3

24
:0

0
10

:4
8

76
.4

6
6.

15
17

.4
68

.5
SD

0
17

.1
9

0
2.

73
N

A
0.

40
1.

60
1.

41
07

:1
2

05
:2

4
29

.4
3

10
.7

4
28

.1
1

35
.3

a
P7

an
d

P8
ga

ve
up

di
sc

us
si

on
fo

r
th

e
A

tl
as

.ti
se

ss
io

n
du

e
to

sp
en

di
ng

to
o

m
uc

h
ti

m
e

in
th

e
C

ol
la

bC
od

er
se

ss
io

n.
b

Fo
llo

w
in

g
th

e
di

sc
us

si
on

se
ss

io
n

in
C

ol
la

bC
od

er
,t

he
or

ig
in

al
co

de
s

ha
ve

be
en

re
st

ru
ct

ur
ed

an
d

fin
al

iz
ed

as
a

si
ng

le
co

de
de

ci
si

on
,r

es
ul

ti
ng

in
an

IR
R
≈

1.
C

on
se

qu
en

tl
y,

IR
R

ca
lc

ul
at

io
ns

ar
e

no
ta

pp
lic

ab
le

(N
A

)f
or

th
e

C
ol

la
bC

od
er

co
nd

it
io

ns
.

129

Chapter 7

Discussion and Future Work

In the future, I intend to extend my research on leveraging HCI methods to enhance
human-AI collaboration and other areas like software engineering. Below, I highlight
several research themes that particularly excite me.

7.1 Towards Automating Qualitative Analysis with Large Language
Models

In this thesis, we have focused exclusively on systems that integrate AI to assist humans
in qualitative analysis. However, a pertinent question arises: Is it feasible for LLMs to
autonomously perform qualitative analysis if provided with specific research questions?
The answer remains uncertain. Previous research has made progress in automatically
prompting GPT for data-related tasks, particularly in the domain of HCI. This includes
studies where GPT models have been utilized for synthesizing HCI data (Hämäläinen,
Tavast, and Kunnari, 2023), applying these models to deductive coding with predetermined
codebooks (Xiao et al., 2023), and examining their potential to function as independent
researchers in data interpretation (Byun, Vasicek, and Seppi, 2023).

Numerous unanswered questions remain regarding GPT’s capabilities in qualitative
analysis. For instance, it’s unclear whether GPT can autonomously conduct inductive
qualitative analysis, such as developing a coding schema from unorganized data. Further
research questions we could explore include:

• To what degree do GPT-generated schemas align with those created by human analysts?

• Can GPT-generated coding schemas be effectively integrated into subsequent qualitative
coding processes?

• What strategies can be employed to prompt GPT to iteratively refine a coding schema,
making it suitable for deductive coding?

• Before interpretation, how might GPT assist in data cleaning to streamline subsequent
data analysis?

Chapter 7. Discussion and Future Work 130

• Can we leverage the depth and systematic nature of qualitative analysis to mitigate
the challenges, particularly the ambiguity problem, inherent in data annotation tasks
in Natural Language Processing (NLP)?

These questions highlight the need for in-depth exploration into the practical applications
and limitations of GPT in qualitative research.

7.2 Constructing Frameworks of Human-LLM Collaboration

Large language models (LLMs) like ChatGPT enable users to engage in a dialogue,
allowing for follow-up questions, corrections of its errors, challenging inaccurate premises,
and denying inappropriate requests. Since ChatGPT’s introduction, conversational
interaction has become the predominant mode between humans and LLMs. This shift
necessitates that humans craft diverse, effective prompts to accomplish tasks. Despite
well-designed prompts enhancing LLMs’ capabilities in many areas, I have noticed that
the mere conversational interaction can sometimes fail in addressing intricate tasks,
encompassing reasoning, organization, and creativity.

As such, optimizing human-LLM interaction may be pivotal in elevating these
abilities further. While many frameworks have been proposed to guide the analysis,
design, and critique of human-AI applications in a theoretical context, LLMs differ from
traditional AI in terms of human-AI interaction modes. Specifically, when considering
interactions between humans and LLMs, they lean heavily on manipulating complex
and abstract levels of prompts. Therefore, I believe this emergence of new design
paradigms has exposed a gap, emphasizing the necessity for a design framework tailored
to this distinct context.

7.3 Augmenting LLMs for Other Areas like Code Auditing

Building on the previously mentioned framework, I found that the design models for
enhancing GPT to handle intricate tasks have versatile applications, including code
auditing. In the realm of code auditing, GPT has emerged as a tool for identifying
security vulnerabilities, especially within smart contracts. These contracts are often
susceptible to a myriad of vulnerabilities. Though many tools exist that target known
patterns, they fall short as they fail to detect around 80% of Web3 security bugs.

Recognizing this gap, Sun et al. (Sun et al., 2023) introduced GPTscan. This method
synergizes GPT with static analysis to detect previously elusive vulnerabilities. While
GPT inherently grasps code vulnerabilities and identifies pertinent attributes, its matching
can sometimes be imprecise. Consequently, GPTScan incorporates a novel filtering
process, honing in on the most relevant candidate functions for GPT matching.

Chapter 7. Discussion and Future Work 131

From this, I found that in code auditing, especially with tools like GPTscan, the
success is not just about improving GPT’s capabilities. A significant opportunity lies
in human-AI collaboration as addressing challenges often requires human insights and
feedback, for instance, in designing filters that rely on human feedback to minimize
false positives. A targeted approach would be to apply HCI methods like interviews
and interaction design to develop interactive tools. Therefore, a synergy between LLMs’
code understanding ability strength and human intuition can lead to more accurate and
comprehensive vulnerability detection.

132

Chapter 8

Conclusion

With the burgeoning advancement of AI and LLMs, the central question driving my
PhD research is: ’How can we enhance collaboration in qualitative analysis—both in
human-to-human interactions through AI and in direct human-AI partnerships?’ This
thesis delves into this question, structured in two distinct yet interconnected parts: 1)
establishing innovative collaborative workflows tailored for qualitative coding teams
that include multiple humans and AI models; 2) enhancing the trust and reliance dynamics
of human-AI teams by examining their varied interactions. This is achieved through
lab-based experiments, interviews, surveys, and various other methods used in HCI
research (Lazar, Feng, and Hochheiser, 2017a).

In Chapter 2: This chapter explains the context surrounding the selection of my
research topic is thoroughly explained. This chapter delves into the foundational motivations
driving this thesis, offering insight into the reasons behind the chosen area of study at
that time.

In Chapter 3: This chapter introduces the core theoretical frameworks underpinning
this thesis. It also presents an overview of related work in the field of generative AI,
particularly focusing on its applications and implications in qualitative analysis.

In Chapter 4: We explore AI’s role in enhancing human-to-human collaboration in
coding, a novel research area. This chapter details the process of understanding coder
behaviors and challenges through interviews and the development of CoAIcoder, a
prototype that offers coding suggestions based on historical data. We evaluate various
collaborative approaches and discover key trade-offs between coding efficiency and
quality, examining how different levels of independence affect outcomes in qualitative
coding scenarios.

In Chapter 5: The chapter investigates how the granularity of code and text impacts
user trust in AI-assisted qualitative coding (AIQC). We conduct a detailed study with
a split-plot design involving 30 participants and a follow-up with 6 participants. The
findings highlight the complexity of human-AI interaction in open coding, emphasizing
the need for tailored design approaches for different subtasks. We also address the

Chapter 8. Conclusion 133

issues of varying trust levels, over-reliance, and under-reliance on AI in coding, laying
groundwork for future research on AIQC user trust and reliance.

In Chapter 6: Here, we introduce CollabCoder, an innovative system designed
to streamline the qualitative coding process. The chapter presents an evaluation of
CollabCoder against traditional platforms like Atlas.ti Web, with 16 participants showing
a preference for its user-friendly interface and AI-enhanced collaborative features. The
system not only facilitates efficient discussions and consensus-building but also aids in
creating codebooks. This chapter sheds light on the challenges and insights in human-AI
and human-human interactions, guiding future design and research in the field of
qualitative analysis.

Our long-term vision extends beyond merely creating AI-assisted coding systems.
We aim to develop systems that are in harmony with qualitative analysis frameworks,
integrating their strengths into our designs. We encourage a broad spectrum of researchers
to join this burgeoning field to address the outstanding questions we have identified.
Furthermore, by leveraging the benefits of qualitative analysis methods, we aspire
to enhance various domains, including data annotation. Our goal is to bridge the
gap between Human-Computer Interaction (HCI) and Natural Language Processing
(NLP), fostering a more integrated approach to these interrelated fields.

134

Appendix A

Appendix for CoAIcoder

A.1 Study Protocol

A.1.1 Welcome to AIQA Study!

Qualitative analysis (QA), a common method in human-computer interaction and social
computing research, involves a key process known as coding. This procedure is crucial
for discerning patterns and extracting insights from qualitative data, though it’s traditionally
labor-intensive and time-consuming. In recent years, researchers have introduced Artificial
Intelligence (AI) to enhance the efficiency of this process. However, they’ve largely
overlooked the collaborative aspect of the coding process. Our project seeks to bridge
this gap by offering an AI-based tool to streamline collaboration among coders. Utilizing
AI to facilitate this interaction could potentially improve coding efficiency, potentially
saving considerable time for QA researchers.

A.1.2 Task Introduction

You are a pair of researchers who are trying to perform qualitative analysis on interview
transcripts of students undergoing a preparatory mock interview. The research question
is to find general qualities of candidates (include good and bad ones).

Your task is to code the sentences so that we may obtain a meaningful analysis of
the transcripts. Here’s an example. If we were to analyse meeting transcripts, a likely
thing to be said during a meeting might be:

"Ok, can Alice please follow up with Bob on the designs".

• A reasonable way to code this sentence could be Action Items.

• A succinct subcode or description could be "A person was asked to follow up on a
task".

• This sentence would then be added as one of the examples of Action Items code.

Appendix A. Appendix for CoAIcoder 135

Participants are also presented with a sample codebook table, specifically Table 1
from DeCuir-Gunby et al.’s work (DeCuir-Gunby, Marshall, and McCulloch, 2011).

A.1.3 Introduction to Three Phases

In the introduction, the instructor presents various strategies for employing CoAIcoder,
which are designed to support distinct conditions across three phases of CQA.

A.1.4 Post-Study Interview Questions

1. What challenges have you encountered during the labeling process when working
individually?

2. What difficulties arise when you engage in collaborative labeling?

3. In your opinion, how effectively does CoAIcoder manage these collaborative challenges?

4. What is your reaction when you encounter a code in the code list that you did not
personally contribute?

5. How would you describe your level of confidence when using the AIcoder?

6. Has CoAIcoderf assistance proven beneficial in resolving conflicts that arise during
the coding process? If so, how?

7. How frequently do you utilize CoAIcoder, and what motivates this usage?

8. Do you perceive that CoAIcoder enhances your coding efficiency and collaboration?
Could you please elaborate?

9. Have you noticed a speed increase in the coding process after the formation of the
codebook? If so, how has this been achieved?

10. Any other relevant and improvised questions.

A.2 Intuitive comparison of the results across four conditions

To facilitate an intuitive comparison of the results across four conditions, the table
below presents the ranking of codes in the formed codebook for each condition.

Appendix A. Appendix for CoAIcoder 136

TABLE A.1: The Ranking of Codes in Formed Codebook of Four
Conditions. Only codes in the first level were counted. The codes in

every cell are different expressions of one core idea labelled in bold.

Ranking

Condition A:
Without AI,
Asynchronous,
not Shared Model

Condition B:
With AI,
Asynchronous,
not Shared Model

Condition C:
With AI,
Asynchronous,
Shared Model

Condition D:
With AI,
Synchronous,
Shared Model

1

Leadership:
Leadership skills(3);
Leadership;
leadership experiences(2);
Leadership experience
with poor relevance;
Work Experience

Strengths:
Humble; Motivated;
Open-minded; Sociable;
very focused; Courage;
Reflective; Introspection;
Rational; Confidence;
Good qualities

Leadership:
Leadership training;
Leadership skills;
Leadership Qualities(2);
leadership(2); Leadership role;
Leadership experience(2)

Leadership:
Leadership experience(4);
leadership(3);
Leadership skills

2

Weakness:
Using their weakness to
their advantages; Weakness that
is addressed; Weakness(2);
Discussion on weakness;
Overcoming weakness;
Poor example of overcoming
weakness; Weakness and
overcoming weakness

Weakness:
Weakness(6);
slightly impulsive;
Indecisive; Shy personality;
Bad qualities; overcoming;
Overcoming weakness;
ways to overcome weaknesses

Weakness:
Weakness(5);
Candidate’s weakness;
Overcoming weakness;
Weakness and how you overcome

Weakness:
Weakness(4);
personal weaknesses;
Weakness and
overcoming weakness;
How to overcome weakness;
Sharing weaknesses

3

Hiring:
Key qualities for hiring;
Irrelevant reasons for hiring;
Self-marketing;
Why candidate should be hired;
Strengths and reason for hire;
Reason to hire

Leadership:
leadership(2); Leadership training;
Group-oriented leadership style;
Leadership and teamwork;
leadership experience(4);
Leadership skills

Introduction:
Background;
Introduction(3);
self-introduction(3)

Introduction:
Introduction(3);
Introduction and Interest;
Current status;
self-introduction

4

Introduction:
Personal introduction;
Introduction;
Education;
Introduction of candidate;
Interests

Introduction:
Introduction(3);
Background Information

Challenges:
Challenges faced(3);
Challenging Situation;
challenge; Problem recognition;
Team working challenge;
Lack of resources;
Language barriers

Teamwork:
Teamwork(2);
Teamwork experience(2)

5

Teamwork:
Tendency to help/accommodate
teammates;
Teamwork(2);
Team experience

Challenges:
Difficulties; Challenges faced;
examples of challenges
working in a team;
Teamwork challenges

Hiring:
Reasons to Hire Candidate;
reason to hire; perfecting herself;
Reasons that interviewee
should get hired;
Why should you be hired

Hiring:
Hiring Quality;
Reasons to hire(2);
Hiring decision;
Strengths and reason
for hire

6

Problem solving:
Problem solving;
Problem Solving Skills
with poor relevance;
Experienced problem solving skills

Hiring:
Reasons for hiring; reason to hire;
reasons for hiring interviewee

Problem solving:
Overcome challenges(2);
Dealing with the challenge;
Problem-solving skills;
Problem solving(2)

Strengths:
Sharing personal strengths;
Positive attributes; Strengths;
Competitive advantage

7
Interest in role:
Candidate’s Vague Interest in Role;
Candidate has Interest in the Role

Interest:
Keen in health; interest

Strengths:
Strengths(2);
Candidate’s strengths;

Challenges:
Challenges faced; Challenge;
Challenges and actions taken;
handling challenges

137

Appendix B

Appendix for CollabCoder

B.1 Different CQA Software

TABLE B.1: Different CQA Software. Note: This list is based on public
online resources and not exhaustive.

Application Atlas.ti Desktop Atlas.ti Web nVivo Desktop Google docs MaxQDA

Collaboration
ways

Coding separately and
then export the project
bundles to other coders

Coding on the
same web page

Coding separately and
then export the project
bundles to other coders

Collaborative
simultaneously

Provide master project
that includes documents
and primary codes, and
then send copies to others,
allowing them to merge

Coding phase All Phases All phases All Phases All phases All Phases
Independence independent not independent Inpedendent not independent Inpedendent
Synchrony Asynchronous Synchronous Asynchronous Synchronous Asynchronous

Unit of analysis Select any text Select any text

Select any text, but
calculation of IRR can be
on character, sentence,
paragraph

Select any text Select any text

IRR

Agreement Percentage;
Holsti Index;
Krippendorff’s
family of Alpha

NA
Agreement Percentage;
Kappa coefficient

NA
Agreement Percentage;
Kappa coefficient

Calculation
of IRR

Calculating after coding
system is stable and
all codes are defined

Calculating
manually
at any time

Calculating after coding
system is stable and
all codes are defined

NA
Calculating after coding
system is stable and
all codes are defined

Multi-valued
coding

support multiple
codes

support multiple
codes

support multiple
codes

support multiple
codes

support multiple
codes

Uncertainty/
Disagreements

NA NA

quickly identify areas of
agreement and disagreement
within the source data
using the green, yellow,
and blue indicators on the
scroll bar.

NA NA

B.2 The primary version of CollabCoder

B.3 Prompts used in CollabCoder

B.4 Demographics of Participants

B.5 Observation notes for participants

Appendix B. Appendix for CollabCoder 138

FIGURE B.1: Primary Prototype for Phase 1.

FIGURE B.2: Primary Prototype for Phase 2.

Appendix B. Appendix for CollabCoder 139

FIGURE B.3: Primary Prototype for Phase 3. The gray-colored codes
serve as an example to illustrate the differences between "Code Group",
"Unique Code", and "User Code". The interfaces shown above, being
preliminary mockups, were utilized to gather feedback from our
primary interviewees in Step3, Section 6.2.1, for the refinement of the

final version of interfaces including Figure 6.5, 6.6, and 6.7.

Appendix B. Appendix for CollabCoder 140

Expert interview

for design goals

Assumptions

Applied and not applied scenarios

Not tackle deductive coding

Might not suitable for crowdsourcing

Limitation and Assumptions

Code units can be flexible

Multiple codes issue

Trade-off: flexibility vs. efforts needed

Workflow

Dedudctive coding has specific research

questions

Can the workflow change the current coders'

collaboration behaviors?

How system tackle the challenges founded in

qualitative analysis theory?

Features

Certainty

Name

Level

Is it necessary?

Comparison
Care more about disagreements than

agreements

Keywords support

Adding keywords is important for comparison

and reducing the understanding burden

between coders

Only rely on codes to do combition is not

enough

Disagreements

Different situations for disagreements:

1. same understandings X same expressions

2. same understanding X different expressions

3. different understanding X same expressions

4. different understanding X different

expressions

Different granularity on coding

Listen to the lead coder

Try to resolve all disagreements instead of

keeping them

Intercoder Reliability

Do not calculate IRR

Calculate IRR in deductive coding

FIGURE B.4: Results of thematic analysis in Step3 (Section 6.2.1) from
expert interviews to derive design goals, with each node representing a

coded element.

Appendix B. Appendix for CollabCoder 141

TABLE B.2: The prompts utilized in CollabCoder in Phase 1 when
communicating with the ChatGPT API to produce code suggestions for

text.

Phases Features Prompt Template Example

Phase 1

Seek code
suggestions
for units

• system role: You are a helpful qualitative
analysis assistant, aiding researchers in
developing codes that can be utilized in
subsequent stages, including discussions
for creating codebooks and final coding
processes;
• user input: Please create three general
summaries for [text] (within six-word);

[Text]:
"How A Business Works was an excellent book
to read as I began my first semester as a college
student. Although my goal is to major in Business,
I started my semester off with no idea of even the
basic guidelines a Business undergrad should know.
This book describes in detail every aspect dealing
with business relations, and I enjoyed reading it.
It felt great going to my additional business classes
prepared and knowledgeable on the subject they
were describing. Very well written, Professor
Haeberle! I recommend this book to anyone and
everyone who would like additional knowledge
pertaining to business matters."

Three general summaries for the above [Text]:
1. Book enlightened my initial business journey.
2. Comprehensive guide for business undergraduates.
3. Knowledge boost for new business students.

Seek most
relevant codes
from coding
history

• system role: You are a helpful qualitative
analysis assistant, aiding researchers in
developing codes that can be utilized in
subsequent stages, including discussions
for creating codebooks and final coding
processes;
• user input: Please identify the top three
codes relevant to this [text] from the
following [Code list];
1. [Code]
2. [Code]
...

Here is the example format of results:
1. code content
2. code content
3. code content

[Text]
"How A Business Works was an excellent book
to read as I began my first semester as a college
student. Although my goal is to major in Business,
I started my semester off with no idea of even the
basic guidelines a Business undergrad should know.
This book describes in detail every aspect dealing
with business relations, and I enjoyed reading it.
It felt great going to my additional business classes
prepared and knowledgeable on the subject they
were describing. Very well written, Professor
Haeberle! I recommend this book to anyone and
everyone who would like additional knowledge
pertaining to business matters."

[Code list]
1. Detailed introduction to business relations
2. Inspiring guide to improve life
3. Journey of light and love.
4. Easy to read, highlight-worthy
5. Well-written lesson on simplicity
6. Rodriguez tells truth, Pelosi lies

Three relevant codes to [Text] from [Code list]:
1. Detailed introduction to business relations
2. Easy to read, highlight-worthy.
3. Well-written lesson on simplicity.

Appendix B. Appendix for CollabCoder 142

TABLE B.3: The prompts utilized in CollabCoder in Phase 2 when
communicating with the ChatGPT API to produce code suggestions for

text.

Phases Features Prompt Template Example

Phase 2
Make code
decisions

• system role: You are a helpful qualitative
analysis assistant, aiding researchers in
developing final codes that can be utilized
in subsequent stages, including final coding
processes;
• user input: Please create three concise,
non-repetitive, and general six-word code
combinations for the [text] using [Code1]
and [Code2]:
1. [Code]
2. [Code]
...

Requirements:
1. 6 words or fewer;
2. No duplicate words;
3. Be general;
4. Three distinct versions

Here is the format of results:
Version1: code content
Version2: code content
Version3: code content

[Text]
"How A Business Works was an excellent book
to read as I began my first semester as a college
student. Although my goal is to major in Business,
I started my semester off with no idea of even the
basic guidelines a Business undergrad should know.
This book describes in detail every aspect dealing
with business relations, and I enjoyed reading it.
It felt great going to my additional business classes
prepared and knowledgeable on the subject they
were describing. Very well written, Professor
Haeberle! I recommend this book to anyone and
everyone who would like additional knowledge
pertaining to business matters."

[Code1]:
Detailed introduction to business relations.
[Code2]:
Comprehensive guide to business basics

Three suggestions for final codes:
Version1: In-depth overview of business fundamentals
Version2: Thorough guide to business relationships
Version3: Comprehensive resource on business essentials

TABLE B.4: The prompts utilized in CollabCoder in Phase 3 when
communicating with the ChatGPT API to produce code group

suggestions for final code decisions.

Phases Features Prompt Template Example

Phase 3
Generate
code groups

• system role: You are a helpful qualitative
analysis assistant, aiding researchers in
generating final code groups/main themes
based on the [Code list] provided, in order
to give an overview of the main content
of the coding.

• user input: Organize the following
[Code list] into 3 thematic groups without
altering the original codes, and name
each group:
1. [Code]
2. [Code]
...

Here is the format of the results:
Group1: [theme]
1.[code]
2.[code]
3.[code]

[Code list]:
1. Simplified business knowledge
2. Unconventional, but valuable business insights.
3. Effective lessons on simplicity
4. Innovative leadership through Jugaad.
5. Cautionary book on costly Google campaigns.
6. Timeless love principles improve business.
7. Politicians deceive for political gain.
8. A high school must-read for financial literacy.
9. Entertaining and educational graphic novel.

Three code groups for the above [Code list]:
Group1: Simplified business knowledge
1. Simplified business knowledge
2. Effective lessons on simplicity
3. Cautionary book on costly Google campaigns.

Group2: Inspiring and practical personal development book
1. Timeless love principles improve business.
2. A high school must-read for financial literacy.
3. Entertaining and educational graphic novel.

Group3: Unconventional, but valuable business insights
1. Innovative leadership through Jugaad.
2. Unconventional, but valuable business insights.
3. Politicians deceive for political gain.

Appendix B. Appendix for CollabCoder 143

TABLE B.5: Demographics of Participants in User Evaluation. Note: QA
expertise is not solely determined by the number of QA experiences,
but also by the level of QA knowledge. This is why some participants
with 1-3 times of prior experience may still regard themselves as having

intermediate expertise.

Pairs English Job Education Related experience
Self-reported
QA expertise

QA times
Software
for QA

Pair 1
P1 Proficient Student Master

Basic understanding
of qualitative research
method

No Experience None None

P2 First language
Automation QA
Engineer

Undergraduate Automation No Experience None None

Pair 2
P3 First language Phd Student PhD and above HCI Expert 7 times above

Atlas.ti
Desktop

P4 First language Undergraduate Undergraduate
Business analytics
with Python and R

No Experience None None

Pair 3
P5 Proficient Student Undergraduate Coding with Python Beginner 1-3 times None

P6 First language
Research
Assistant

Master Asian studies Expert
7 times above
(mainly interview
data)

Word,
Excel,
Dedoose

Pair 4
P7 First language Data Analyst Undergraduate Data Visualisation No Experience None None

P8 First language Student Undergraduate
R, HTML/CSS,
Market research

Beginner 1-3 times R

Pair 5
P9 First language Research assistant Undergraduate

Learning science,
Grounded theory

Intermediate 4-6 times nVivo

P10 First language
Data science
intern

Undergraduate
Computer Vision,
Python

No Experience None None

Pair 6
P11 First language

Behavioral
Scientist

Undergraduate
Psychology,
Behavioral Science,
Thematic analysis

Intermediate 1-3 times Word

P12 First language Student Undergraduate
Accounting &
Python, SQL

No experience None None

Pair 7
P13 First language

Research
Assistant

Undergraduate

SPSS, Python, basic
qualitative analysis
understanding,
topic modeling

Beginner 1-3 times None

P14 First language
Research
Assistant

Undergraduate

Have research
experience using
QA for interview
transcription

Intermediate 7 times above
nVivo,
Excel

Pair 8
P15 First language Researcher Master

Thematic analysis
for interview,
literature review

Beginner 1-3 times fQCA

P16 First language Student Master Social science No experience None None

Appendix B. Appendix for CollabCoder 144

TABLE B.6: Observation notes for Pair1-Pair4. The language has been
revised for readability.

Atlas.ti Web CollabCoder

P1xP2

Even individuals familiar with Google Docs/Excel might find it
challenging to adapt to Atlas.ti, P1’s learning pace was even slower
than P2’s. P1’s coding was more detailed and extensive than P2’s,
making his codes longer and more content-rich. His lack of experience
in ML further hampered his speed, causing a significant delay in
the coding process. In a 30-minute span, he managed only 5 codes
compared to another coder who completed all 20. Due to time
constraints, we had to stop the process.

Over time, the involvement of the other coder diminished.
Only one coder, more adept with the platform, primarily handled
the coding process. The other coder, like P1, shifted to a supportive
role, offering input on the final report and the categorization phase.

This time around, P1 found it easier to start coding. Both he
and the other coder seldom used the "Similar codes" function.
Additionally, they rarely used the "certainty" button, indicating
a potential issue of over-reliance on certain features or methods.

P3xP4

Even the expert coder (P3) faced challenges learning the software
and initially felt lost navigating its interface. Additionally, she
found it difficult to identify the origin of selected text when only
a portion is chosen from the original unit.

In both coding sessions, the lead coder shares her screen and
invites the other coder to offer suggestions for combining codes
and arriving at the final code. Due to the limitations of the software,
they are obliged to manually search for similar codes, relying on
visual inspection to group them together.

P3 is a conscientious coder who is concerned about potentially
slowing down the overall pace of the study. To address this, she
intermittently checks the progress of others to adjust her own
workflow. She finds this feature to be "quite helpful."

When it comes to coding, if the codes are identical, they typically
don’t consult definitions. While ChatGPT serves as a reference point
for decision-making, it is not strictly followed. If there’s a difference
in understanding, they will refer to ChatGPT for final decision support.

When P4 sets the certainty level to 2, it signifies "I’m not sure what
this person is talking about." The lead coder is conscious of not overly
relying on her own codes, as she doesn’t want to appear too dominant
within the team. By using third-party codes, she aims to maintain a
more balanced influence. P4 also mentioned that he sometimes assigns
low priority to definitions because he has only a few to refer to.

During the decision-making process, direct selections from ChatGPT
suggestions have become less frequent. Instead, the team tends to use
ChatGPT is more of a point of reference. This seems to indicate that they
are becoming more cautious in their approach.

P5xP6

Beginners have the option of referring to others’ codes as a
starting point for their own coding endeavors. P6, for instance,
prefers to check the code history. This approach can provide
valuable insights and context, helping new coders understand the
coding process better and potentially speeding up their learning
curve. The team takes advantage of the auto-completion function,
typing in just a few words and then clicking the check button to
select existing codes instead of creating new ones. When P5 is
coding, he initially refers to other people’s codes before adding
his own.

The codes generated by both coders tend to be rather general.
They often refer to each other’s work, with the beginner usually
following the coding scheme established by the more experienced
coder.

Russell is not familiar with the new coding method and initially
selected the entire text as "keywords support", thinking that only
the selected portion would be coded. This suggests that users may
need some training to effectively use the coding system.

P7xP8
To speed up the coding process, only one coder takes on the
responsibility of combining and grouping the codes into thematic
clusters.

P7 and P8 both tend to use ChatGPT sparingly, favoring the creation of
their own codes. P7 mentions that the long latency for ChatGPT’s suggestions
is a factor; if the results aren’t quick, he opts to input his own codes. P8
notes that she often has to edit ChatGPT’s suggestions, deleting some
words to better tailor them to her needs.

However, they are more likely to choose suggestions from ChatGPT if they
want to expedite the process. Even if they don’t ultimately select a ChatGPT
suggestion, they still refer to these codes as a reference point. This approach
aligns with the sentiment that AI can’t be trusted for every task; it serves
as a tool rather than a definitive authority.

If there’s any uncertainty about why a code is part of a specific group, or if
the meaning of a code within a group is unclear, they will refer back to the
original text during the code grouping phase for clarification.

By highlighting keywords and listing them, the coders are able to work
asynchronously instead of in real-time. This approach allows each coder to
leave markers of their understanding, facilitating a smoother integration of
perspectives without the need for immediate discussion.

Appendix B. Appendix for CollabCoder 145

TABLE B.7: Observation notes for Pair5-Pair8. The language has been
revised for readability.

Atlas.ti Web CollabCoder

P9xP10 Normal collaboration process, no specific notes

The coding process involves multiple steps: initially reading the
data, requesting suggestions, reviewing those suggestions, returning
to the raw data for another check, and then choosing or editing the code.
After this, keywords are added and the level of certainty is labeled.

When it comes to merging codes, the team starts with a preliminary
idea for a final decision, and then consults ChatGPT to generate
a final, merged code.

P11xP12

P12 adopts a strategy of starting his coding from the last data
point and working his way to the top, in an effort to minimize
overlap and influence from P11. The pace at which each coder
works varies significantly: one coder is much faster than the
other and, consequently, contributes more to the overall workload.

In time-sensitive situations, the quicker coder naturally takes on
more responsibilities than the slower coder. This dynamic could
have implications for the diversity and depth of coding, as the
faster coder’s perspectives may disproportionately influence the
final output.

A less-than-ideal scenario for discussion. The team may overly
rely on ChatGPT’s generated decisions due to time constraints.
In these cases, substantive discussion is replaced with shortcuts
like simply choosing "the first one" or "the second one" from
ChatGPT’s suggestions. This is a notable drawback for the research,
as it sidesteps deeper analysis and thought, leading to concerns
about over-reliance on automated suggestions. The dynamic
often results in the more experienced coder taking a dominant
role in the process, which could impact the diversity of perspectives
in the coding.

AI does offer the advantage of allowing users to work with
longer text segments compared to manual coding, which often
focuses on keywords or smaller data units. However, this advantage
should not come at the expense of thoughtful discussion and careful
consideration in the coding process.

P13xP14 Normal collaboration process, no specific notes

The overall coding process appears to be smooth. Both coders
generally agree and neither is overly dominant; they respect each
other’s opinions. Because of this harmony, they utilize ChatGPT
to generate the final code expressions.

It seems that AI plays a significant role in the code grouping process,
directing the way codes are organized. When the coders are working
independently, they tend to group codes based on sentiment analysis.
However, under AI’s guidance, their focus shifts to content analysis.
This suggests that while AI can be a helpful tool, its influence can also
steer the analytical direction, which may or may not align with the
coders’ initial approach or intentions.

P15xP16

Due to time constraints, discussions between the coders are
notably brief and to the point. There isn’t much room for
extended dialogue or deeper analysis, which could have
implications for the thoroughness and quality of the coding
process.

Participants generally start by reading the original text, then request
suggestions from ChatGPT before proceeding to code the data.

P16 follows this sequence, reading the text first and then consulting
ChatGPT’s suggestions. P15, on the other hand, sometimes deletes
her initial code entry to generate a different version. Due to time
constraints, she doesn’t delve deeply into the text and may even skip
over some sections. To save time, she might initiate ChatGPT’s code
suggestion process for another text segment while working on the
current one.

Both P15 and P16 demonstrate mutual respect when their codes
closely align (with a similarity score greater than 0.9). They don’t
particularly mind whose code is used for the final decision. For
instance, they may choose one of P15’s codes for one text segment
and switch to another code from P16 for a different segment.

If their coding doesn’t match despite having similar evidence, they
discuss the reasons behind their code choices. The coder with the
more explainable rationale usually wins out, with the other coder
simply saying, "Use yours." If they can’t reach a decision, they turn
to ChatGPT for a suggested code.

When neither coder feels confident in their understanding of the
raw data, they’ll admit their uncertainty, often stating, "I have no
idea about this", before potentially seeking further guidance.

146

Bibliography

Akpınar, Ercan, Demet Erol, and Bülent Aydoğdu (2009). “The role of cognitive conflict
in constructivist theory: An implementation aimed at science teachers”. In: Procedia
- Social and Behavioral Sciences 1.1. World Conference on Educational Sciences: New
Trends and Issues in Educational Sciences, pp. 2402–2407. ISSN: 1877-0428. DOI:
https://doi.org/10.1016/j.sbspro.2009.01.421. URL: https://
www.sciencedirect.com/science/article/pii/S1877042809004248.

Allen, J.E., C.I. Guinn, and E. Horvtz (1999). “Mixed-initiative interaction”. In: IEEE
Intelligent Systems and their Applications 14.5, pp. 14–23. DOI: 10.1109/5254.
796083.

Altman, Douglas G and J Martin Bland (1995). “Statistics notes: Absence of evidence is
not evidence of absence”. In: Bmj 311.7003, p. 485. DOI: https://doi.org/10.
1136/bmj.311.7003.485.

Amershi, Saleema et al. (2014). “Power to the people: The role of humans in interactive
machine learning”. In: Ai Magazine 35.4, pp. 105–120.

Amiryousefi, Mohammad et al. (2021). “Impact of Etherpad-based Collaborative Writing
Instruction on EFL Learners’ Writing Performance, Writing Self-efficacy, and Attribution:
A Mixed-Method Approach”. In: Two Quarterly Journal of English Language Teaching
and Learning University of Tabriz 13.28, pp. 19–37.

Anderson, Ross C, Meg Guerreiro, and Joanna Smith (2016). “Are all biases bad? Collaborative
grounded theory in developmental evaluation of education policy”. In: Journal of
Multidisciplinary Evaluation 12.27, pp. 44–57. DOI: https://doi.org/10.56645/
jmde.v12i27.449.

Ashktorab, Zahra, Michael Desmond, et al. (2021). “AI-Assisted Human Labeling: Batching
for Efficiency without Overreliance”. In: Proceedings of the ACM on Human-Computer
Interaction 5.CSCW1, pp. 1–27.

Ashktorab, Zahra, Q. Vera Liao, et al. (Oct. 2020). “Human-AI Collaboration in a Cooperative
Game Setting: Measuring Social Perception and Outcomes”. In: Proc. ACM Hum.-Comput.
Interact. 4.CSCW2. DOI: 10.1145/3415167. URL: https://doi.org/10.1145/
3415167.

Azungah, Theophilus (2018). “Qualitative research: deductive and inductive approaches
to data analysis”. In: Qualitative research journal 18.4, pp. 383–400.

https://doi.org/https://doi.org/10.1016/j.sbspro.2009.01.421
https://www.sciencedirect.com/science/article/pii/S1877042809004248
https://www.sciencedirect.com/science/article/pii/S1877042809004248
https://doi.org/10.1109/5254.796083
https://doi.org/10.1109/5254.796083
https://doi.org/https://doi.org/10.1136/bmj.311.7003.485
https://doi.org/https://doi.org/10.1136/bmj.311.7003.485
https://doi.org/https://doi.org/10.56645/jmde.v12i27.449
https://doi.org/https://doi.org/10.56645/jmde.v12i27.449
https://doi.org/10.1145/3415167
https://doi.org/10.1145/3415167
https://doi.org/10.1145/3415167

Bibliography 147

Bach, Tita Alissa et al. (2022). “A Systematic Literature Review of User Trust in AI-Enabled
Systems: An HCI Perspective”. In: International Journal of Human–Computer Interaction,
pp. 1–16.

BANOVIC, NIKOLA et al. (2023). “Being Trustworthy is Not Enough: How Untrustworthy
Artificial Intelligence (AI) Can Deceive the End-Users and Gain Their Trust”. In.

Barry, Christine A. et al. (1999). “Using Reflexivity to Optimize Teamwork in Qualitative
Research”. In: Qualitative Health Research 9.1. PMID: 10558357, pp. 26–44. DOI: 10.
1177/104973299129121677. eprint: https://doi.org/10.1177/104973299129121677.
URL: https://doi.org/10.1177/104973299129121677.

Baumer, Eric PS et al. (2017). “Comparing grounded theory and topic modeling: Extreme
divergence or unlikely convergence?” In: Journal of the Association for Information
Science and Technology 68.6, pp. 1397–1410.

Bebermeier, Sarah and Denise Kerkhoff (2019). “Use and Impact of the Open Source
Online Editor Etherpad in a Psychology Students’ Statistics Class.” In: Psychology
Teaching Review 25.2, pp. 30–38.

Bjørn, Pernille et al. (Nov. 2014). “Does Distance Still Matter? Revisiting the CSCW
Fundamentals on Distributed Collaboration”. In: ACM Trans. Comput.-Hum. Interact.
21.5. ISSN: 1073-0516. DOI: 10.1145/2670534. URL: https://doi.org/10.
1145/2670534.

Bocklisch, Tom et al. (2017). “Rasa: Open source language understanding and dialogue
management”. In: arXiv preprint arXiv:1712.05181.

Brachman, Michelle et al. (2022). “Reliance and Automation for Human-AI Collaborative
Data Labeling Conflict Resolution”. In: Proceedings of the ACM on Human-Computer
Interaction 6.CSCW2, pp. 1–27.

Bradley, Jana (1993). “Methodological issues and practices in qualitative research”. In:
The Library Quarterly 63.4, pp. 431–449.

Braun, Virginia and Victoria Clarke (2006). “Using thematic analysis in psychology”. In:
Qualitative research in psychology 3.2, pp. 77–101. DOI: DOI:10.1191/1478088706qp063oa.

Bryant, Antony and Kathy Charmaz (2007). The Sage handbook of grounded theory. Sage.
Buçinca, Zana, Maja Barbara Malaya, and Krzysztof Z Gajos (2021). “To trust or to

think: cognitive forcing functions can reduce overreliance on AI in AI-assisted decision-making”.
In: Proceedings of the ACM on Human-Computer Interaction 5.CSCW1, pp. 1–21.

Bunk, Tanja et al. (2020). “Diet: Lightweight language understanding for dialogue systems”.
In: arXiv preprint arXiv:2004.09936.

Byun, Courtni, Piper Vasicek, and Kevin Seppi (2023). “Dispensing with Humans in
Human-Computer Interaction Research”. In: Extended Abstracts of the 2023 CHI Conference
on Human Factors in Computing Systems. CHI EA ’23. Hamburg, Germany: Association
for Computing Machinery. ISBN: 9781450394222. DOI: 10.1145/3544549.3582749.
URL: https://doi.org/10.1145/3544549.3582749.

https://doi.org/10.1177/104973299129121677
https://doi.org/10.1177/104973299129121677
https://doi.org/10.1177/104973299129121677
https://doi.org/10.1177/104973299129121677
https://doi.org/10.1145/2670534
https://doi.org/10.1145/2670534
https://doi.org/10.1145/2670534
https://doi.org/DOI: 10.1191/1478088706qp063oa
https://doi.org/10.1145/3544549.3582749
https://doi.org/10.1145/3544549.3582749

Bibliography 148

Campero, Andres et al. (2022). “A test for evaluating performance in human-computer
systems”. In: arXiv preprint arXiv:2206.12390.

Cao, Junming et al. (2023). Understanding the Complexity and Its Impact on Testing in
ML-Enabled Systems. arXiv: 2301.03837 [cs.SE].

Cao, Shiye and Chien-Ming Huang (2022). “Understanding User Reliance on AI in
Assisted Decision-Making”. In: Proceedings of the ACM on Human-Computer Interaction
6.CSCW2, pp. 1–23.

Cash, Philip J. (2018). “Developing theory-driven design research”. In: Design Studies
56, pp. 84–119. ISSN: 0142-694X. DOI: https://doi.org/10.1016/j.destud.
2018.03.002. URL: https://www.sciencedirect.com/science/article/
pii/S0142694X18300140.

Ceccato, Mariano et al. (2004). “Ambiguity identification and measurement in natural
language texts”. In.

Charmaz, Kathy (2014). Constructing grounded theory. sage.
Chen, Li et al. (Oct. 2013). “Human Decision Making and Recommender Systems”. In:

ACM Trans. Interact. Intell. Syst. 3.3. ISSN: 2160-6455. DOI: 10.1145/2533670.
2533675. URL: https://doi.org/10.1145/2533670.2533675.

Chen, Nan-Chen et al. (June 2018). “Using Machine Learning to Support Qualitative
Coding in Social Science: Shifting the Focus to Ambiguity”. In: ACM Trans. Interact.
Intell. Syst. 8.2. ISSN: 2160-6455. DOI: 10.1145/3185515. URL: https://doi.
org/10.1145/3185515.

Chen, Nan-chen et al. (2016). “Challenges of applying machine learning to qualitative
coding”. In: ACM SIGCHI Workshop on Human-Centered Machine Learning.

Cheng, Hao-Fei et al. (2019). “Explaining Decision-Making Algorithms through UI:
Strategies to Help Non-Expert Stakeholders”. In: Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. CHI ’19. Glasgow, Scotland Uk: Association
for Computing Machinery, pp. 1–12. ISBN: 9781450359702. DOI: 10.1145/3290605.
3300789. URL: https://doi.org/10.1145/3290605.3300789.

Chinh, Bonnie et al. (2019). “Ways of Qualitative Coding: A Case Study of Four Strategies
for Resolving Disagreements”. In: Extended Abstracts of the 2019 CHI Conference on
Human Factors in Computing Systems. CHI EA ’19. Glasgow, Scotland Uk: Association
for Computing Machinery, pp. 1–6. ISBN: 9781450359719. DOI: 10.1145/3290607.
3312879. URL: https://doi.org/10.1145/3290607.3312879.

Clark, Herbert H. and Susan E. Brennan (1991). “Grounding in Communication”. In:
Perspectives on Socially Shared Cognition. Ed. by Lauren Resnick et al. American Psychological
Association, pp. 13–1991. DOI: https://doi.org/10.1037/10096-006.

Collins, Christopher S. and Carrie M. Stockton (2018). “The Central Role of Theory in
Qualitative Research”. In: International Journal of Qualitative Methods 17.1, p. 1609406918797475.

https://arxiv.org/abs/2301.03837
https://doi.org/https://doi.org/10.1016/j.destud.2018.03.002
https://doi.org/https://doi.org/10.1016/j.destud.2018.03.002
https://www.sciencedirect.com/science/article/pii/S0142694X18300140
https://www.sciencedirect.com/science/article/pii/S0142694X18300140
https://doi.org/10.1145/2533670.2533675
https://doi.org/10.1145/2533670.2533675
https://doi.org/10.1145/2533670.2533675
https://doi.org/10.1145/3185515
https://doi.org/10.1145/3185515
https://doi.org/10.1145/3185515
https://doi.org/10.1145/3290605.3300789
https://doi.org/10.1145/3290605.3300789
https://doi.org/10.1145/3290605.3300789
https://doi.org/10.1145/3290607.3312879
https://doi.org/10.1145/3290607.3312879
https://doi.org/10.1145/3290607.3312879
https://doi.org/https://doi.org/10.1037/10096-006

Bibliography 149

DOI: 10.1177/1609406918797475. eprint: https://doi.org/10.1177/
1609406918797475. URL: https://doi.org/10.1177/1609406918797475.

Corbin, Juliet and Anselm Strauss (2008). Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. Sage publications Sage.

— (2014). Basics of qualitative research: Techniques and procedures for developing grounded
theory. Sage publications.

Corbin, Juliet M and Anselm Strauss (1990). “Grounded theory research: Procedures,
canons, and evaluative criteria”. In: Qualitative sociology 13.1, pp. 3–21. DOI: https:
//doi.org/10.1007/BF00988593.

Cornish, Flora, Alex Gillespie, and Tania Zittoun (2013). “Collaborative analysis of
qualitative data”. In: The SAGE handbook of qualitative data analysis 79, p. 93. DOI:
https://doi.org/10.4135/9781446282243.

Crowston, Kevin, Xiaozhong Liu, and Eileen E Allen (2010). “Machine learning and
rule-based automated coding of qualitative data”. In: proceedings of the American
Society for Information Science and Technology 47.1, pp. 1–2.

Davani, Aida Mostafazadeh, Mark Díaz, and Vinodkumar Prabhakaran (2022). “Dealing
with Disagreements: Looking Beyond the Majority Vote in Subjective Annotations”.
In: Transactions of the Association for Computational Linguistics 10, pp. 92–110. DOI:
10.1162/tacl_a_00449. URL: https://aclanthology.org/2022.tacl-
1.6.

DeCuir-Gunby, Jessica T, Patricia L Marshall, and Allison W McCulloch (2011). “Developing
and using a codebook for the analysis of interview data: An example from a professional
development research project”. In: Field methods 23.2, pp. 136–155.

Díaz, Jessica et al. (2023). “Applying Inter-Rater Reliability and Agreement in collaborative
Grounded Theory studies in software engineering”. In: Journal of Systems and Software
195, p. 111520. ISSN: 0164-1212. DOI: https://doi.org/10.1016/j.jss.
2022.111520. URL: https://www.sciencedirect.com/science/article/
pii/S0164121222001960.

Drouhard, Margaret et al. (2017). “Aeonium: Visual analytics to support collaborative
qualitative coding”. In: 2017 IEEE Pacific Visualization Symposium (PacificVis). IEEE,
pp. 220–229.

Dzindolet, Mary T et al. (2003). “The role of trust in automation reliance”. In: International
journal of human-computer studies 58.6, pp. 697–718.

Emamgholizadeh, Hanif (2022). “Supporting Group Decision-Making Processes Based
on Group Dynamics”. In: Proceedings of the 30th ACM Conference on User Modeling,
Adaptation and Personalization. UMAP ’22. Barcelona, Spain: Association for Computing
Machinery, pp. 346–350. ISBN: 9781450392075. DOI: 10.1145/3503252.3534358.
URL: https://doi.org/10.1145/3503252.3534358.

https://doi.org/10.1177/1609406918797475
https://doi.org/10.1177/1609406918797475
https://doi.org/10.1177/1609406918797475
https://doi.org/10.1177/1609406918797475
https://doi.org/https://doi.org/10.1007/BF00988593
https://doi.org/https://doi.org/10.1007/BF00988593
https://doi.org/https://doi.org/10.4135/9781446282243
https://doi.org/10.1162/tacl_a_00449
https://aclanthology.org/2022.tacl-1.6
https://aclanthology.org/2022.tacl-1.6
https://doi.org/https://doi.org/10.1016/j.jss.2022.111520
https://doi.org/https://doi.org/10.1016/j.jss.2022.111520
https://www.sciencedirect.com/science/article/pii/S0164121222001960
https://www.sciencedirect.com/science/article/pii/S0164121222001960
https://doi.org/10.1145/3503252.3534358
https://doi.org/10.1145/3503252.3534358

Bibliography 150

Entin, Elliot E. (2000). “Performance and Process Measure Relationships in Transitioning
from a Low to High Fidelity Simulation Environment”. In: Proceedings of the Human
Factors and Ergonomics Society Annual Meeting 44.1, pp. 280–280. DOI: 10.1177/
154193120004400177. eprint: https://doi.org/10.1177/154193120004400177.
URL: https://doi.org/10.1177/154193120004400177.

Eyuboglu, Sabri et al. (2022). “dcbench: a benchmark for data-centric AI systems”.
In: Proceedings of the Sixth Workshop on Data Management for End-To-End Machine
Learning, pp. 1–4.

Farra, Noura et al. (2010). “Sentence-level and document-level sentiment mining for
arabic texts”. In: 2010 IEEE international conference on data mining workshops. IEEE,
pp. 1114–1119.

Felix, Cristian, Aritra Dasgupta, and Enrico Bertini (2018). “The exploratory labeling
assistant: Mixed-initiative label curation with large document collections”. In: Proceedings
of the 31st Annual ACM Symposium on User Interface Software and Technology, pp. 153–164.

Fereday, Jennifer and Eimear Muir-Cochrane (2006). “Demonstrating rigor using thematic
analysis: A hybrid approach of inductive and deductive coding and theme development”.
In: International journal of qualitative methods 5.1, pp. 80–92.

Feuston, Jessica L. and Jed R. Brubaker (Oct. 2021). “Putting Tools in Their Place: The
Role of Time and Perspective in Human-AI Collaboration for Qualitative Analysis”.
In: Proc. ACM Hum.-Comput. Interact. 5.CSCW2. DOI: 10.1145/3479856. URL:
https://doi.org/10.1145/3479856.

Flick, Uwe (2013). The SAGE handbook of qualitative data analysis. Sage.
Freitas, Fábio et al. (2017). “Learn for yourself: The self-learning tools for qualitative

analysis software packages”. In: Digital Education Review 32, pp. 97–117.
Ganji, Abbas, Mania Orand, and David W. McDonald (Nov. 2018). “Ease on Down the

Code: Complex Collaborative Qualitative Coding Simplified with ’Code Wizard’”.
In: Proc. ACM Hum.-Comput. Interact. 2.CSCW. DOI: 10 . 1145 / 3274401. URL:
https://doi.org/10.1145/3274401.

Gao, Jie, Kenny Tsu Wei Choo, et al. (Aug. 2023). “CoAIcoder: Examining the Effectiveness
of AI-Assisted Human-to-Human Collaboration in Qualitative Analysis”. In: ACM
Trans. Comput.-Hum. Interact. Just Accepted. ISSN: 1073-0516. DOI: 10.1145/3617362.
URL: https://doi.org/10.1145/3617362.

Gao, Jie, Yuchen Guo, Toby Jia-Jun Li, et al. (2023). “CollabCoder: A GPT-Powered
WorkFlow for Collaborative Qualitative Analysis”. In: Companion Publication of the
2023 Conference on Computer Supported Cooperative Work and Social Computing. CSCW
’23 Companion. Minneapolis, MN, USA: Association for Computing Machinery,
pp. 354–357. ISBN: 9798400701290. DOI: 10.1145/3584931.3607500. URL: https:
//doi.org/10.1145/3584931.3607500.

https://doi.org/10.1177/154193120004400177
https://doi.org/10.1177/154193120004400177
https://doi.org/10.1177/154193120004400177
https://doi.org/10.1177/154193120004400177
https://doi.org/10.1145/3479856
https://doi.org/10.1145/3479856
https://doi.org/10.1145/3274401
https://doi.org/10.1145/3274401
https://doi.org/10.1145/3617362
https://doi.org/10.1145/3617362
https://doi.org/10.1145/3584931.3607500
https://doi.org/10.1145/3584931.3607500
https://doi.org/10.1145/3584931.3607500

Bibliography 151

Gao, Jie, Yuchen Guo, Gionnieve Lim, et al. (2023). CollabCoder: A GPT-Powered Workflow
for Collaborative Qualitative Analysis. arXiv: 2304.07366 [cs.HC].

Gao, Jie, Leijing Zhou, et al. (2018). “Expressive Plant: A Multisensory Interactive System
for Sensory Training of Children with Autism”. In: Proceedings of the 2018 ACM
International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous
Computing and Wearable Computers. UbiComp ’18. Singapore, Singapore: Association
for Computing Machinery, pp. 46–49. ISBN: 9781450359665. DOI: 10.1145/3267305.
3267588. URL: https://doi.org/10.1145/3267305.3267588.

Gebreegziabher, Simret Araya et al. (2023). “PaTAT: Human-AI Collaborative Qualitative
Coding with Explainable Interactive Rule Synthesis”. In: Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems. CHI ’23. Hamburg, Germany:
Association for Computing Machinery. ISBN: 9781450394215. DOI: 10.1145/3544548.
3581352. URL: https://doi.org/10.1145/3544548.3581352.

Giraud-Carrier, Christophe (Dec. 2000). “A Note on the Utility of Incremental Learning”.
In: AI Commun. 13.4, pp. 215–223. ISSN: 0921-7126.

Glaser, Barney and Anselm Strauss (2017). Discovery of grounded theory: Strategies for
qualitative research. Routledge.

Golafshani, Nahid (2003). “Understanding reliability and validity in qualitative research”.
In: The qualitative report 8.4, pp. 597–607. DOI: https://doi.org/10.46743/
2160-3715/2003.1870.

Goldman, Max, Greg Little, and Robert C Miller (2011). “Real-time collaborative coding
in a web IDE”. In: Proceedings of the 24th annual ACM symposium on User interface
software and technology, pp. 155–164.

Grad Coach (2023). Qualitative Data Analysis Methods: Top 6 + Examples. https://
gradcoach.com/qualitative-data-analysis-methods/.

Grimes, G. Mark, Ryan M. Schuetzler, and Justin Scott Giboney (2021). “Mental models
and expectation violations in conversational AI interactions”. In: Decision Support
Systems 144, p. 113515. ISSN: 0167-9236. DOI: https://doi.org/10.1016/j.
dss.2021.113515. URL: https://www.sciencedirect.com/science/
article/pii/S0167923621000257.

Hackshaw, Allan (2008). Small studies: strengths and limitations. DOI: https://doi.
org/10.1183/09031936.00136408.

Hall, Wendy A et al. (2005). “Qualitative teamwork issues and strategies: Coordination
through mutual adjustment”. In: Qualitative Health Research 15.3, pp. 394–410.

Hämäläinen, Perttu, Mikke Tavast, and Anton Kunnari (2023). “Evaluating Large Language
Models in Generating Synthetic HCI Research Data: A Case Study”. In: Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems. CHI ’23. <conf-loc>,
<city>Hamburg</city>, <country>Germany</country>, </conf-loc>: Association

https://arxiv.org/abs/2304.07366
https://doi.org/10.1145/3267305.3267588
https://doi.org/10.1145/3267305.3267588
https://doi.org/10.1145/3267305.3267588
https://doi.org/10.1145/3544548.3581352
https://doi.org/10.1145/3544548.3581352
https://doi.org/10.1145/3544548.3581352
https://doi.org/https://doi.org/10.46743/2160-3715/2003.1870
https://doi.org/https://doi.org/10.46743/2160-3715/2003.1870
https://gradcoach.com/qualitative-data-analysis-methods/
https://gradcoach.com/qualitative-data-analysis-methods/
https://doi.org/https://doi.org/10.1016/j.dss.2021.113515
https://doi.org/https://doi.org/10.1016/j.dss.2021.113515
https://www.sciencedirect.com/science/article/pii/S0167923621000257
https://www.sciencedirect.com/science/article/pii/S0167923621000257
https://doi.org/https://doi.org/10.1183/09031936.00136408
https://doi.org/https://doi.org/10.1183/09031936.00136408

Bibliography 152

for Computing Machinery. ISBN: 9781450394215. DOI: 10.1145/3544548.3580688.
URL: https://doi.org/10.1145/3544548.3580688.

Hong, Matt-Heun et al. (2022). “Scholastic: Graphical Human-AI Collaboration for
Inductive and Interpretive Text Analysis”. In: Proceedings of the 35th Annual ACM
Symposium on User Interface Software and Technology. UIST ’22. Bend, OR, USA: Association
for Computing Machinery. ISBN: 9781450393201. DOI: 10.1145/3526113.3545681.
URL: https://doi.org/10.1145/3526113.3545681.

Hopper, Tim et al. (2021). “YouTube for transcribing and Google drive for collaborative
coding: Cost-effective tools for collecting and analyzing interview data”. In: The
Qualitative Report 26.3, pp. 861–873. DOI: https://doi.org/10.46743/2160-
3715/2021.4639.

Horvitz, Eric (1999). “Principles of Mixed-Initiative User Interfaces”. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. CHI ’99. Pittsburgh,
Pennsylvania, USA: Association for Computing Machinery, pp. 159–166. ISBN: 0201485591.
DOI: 10.1145/302979.303030. URL: https://doi.org/10.1145/302979.
303030.

Interaction Institute for Social Change (July 2018). Power Dynamics: The Hidden Element
to Effective Meetings. https://interactioninstitute.org/power-dynamics-
the-hidden-element-to-effective-meetings/.

Ippolito, Daphne et al. (2022). Creative Writing with an AI-Powered Writing Assistant:
Perspectives from Professional Writers. arXiv: 2211.05030 [cs.HC].

Jameson, Anthony, Stephan Baldes, and Thomas Kleinbauer (2003). “Enhancing mutual
awareness in group recommender systems”. In: Proceedings of the IJCAI. Vol. 10.
989863.989948.

Janis, Irving L (2008). “Groupthink”. In: IEEE Engineering Management Review 36.1,
p. 36. DOI: 10.1109/EMR.2008.4490137.

Jiang, Jialun Aaron et al. (Apr. 2021). “Supporting Serendipity: Opportunities and Challenges
for Human-AI Collaboration in Qualitative Analysis”. In: Proc. ACM Hum.-Comput.
Interact. 5.CSCW1. DOI: 10.1145/3449168. URL: https://doi.org/10.1145/
3449168.

Jörg Hecker, Neringa Kalpokas (2023). The Ultimate Guide to Qualitative Research - Part 1:
The Basics. URL: https://atlasti.com/guides/qualitative-research-
guide-part-1/theoretical-perspective.

Kaufmann, Andreas, Ann Barcomb, and Dirk Riehle (2020). “Supporting Interview
Analysis with Autocoding.” In: HICSS, pp. 1–10.

Kim, Tae Soo et al. (2023). “Cells, generators, and lenses: Design framework for object-oriented
interaction with large language models”. In: Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology, pp. 1–18.

https://doi.org/10.1145/3544548.3580688
https://doi.org/10.1145/3544548.3580688
https://doi.org/10.1145/3526113.3545681
https://doi.org/10.1145/3526113.3545681
https://doi.org/https://doi.org/10.46743/2160-3715/2021.4639
https://doi.org/https://doi.org/10.46743/2160-3715/2021.4639
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://interactioninstitute.org/power-dynamics-the-hidden-element-to-effective-meetings/
https://interactioninstitute.org/power-dynamics-the-hidden-element-to-effective-meetings/
https://arxiv.org/abs/2211.05030
https://doi.org/10.1109/EMR.2008.4490137
https://doi.org/10.1145/3449168
https://doi.org/10.1145/3449168
https://doi.org/10.1145/3449168
https://atlasti.com/guides/qualitative-research-guide-part-1/theoretical-perspective
https://atlasti.com/guides/qualitative-research-guide-part-1/theoretical-perspective

Bibliography 153

Knowles, Bran et al. (2015). “Models and patterns of trust”. In: Proceedings of the 18th
ACM Conference on Computer Supported Cooperative Work & Social Computing, pp. 328–338.

Kocielnik, Rafal, Saleema Amershi, and Paul N Bennett (2019). “Will you accept an
imperfect ai? exploring designs for adjusting end-user expectations of ai systems”.
In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems,
pp. 1–14.

Kok, Ties de (2023). “Generative LLMs and Textual Analysis in Accounting:(Chat) GPT
as Research Assistant?” In: Available at SSRN.

Kurasaki, Karen S (2000). “Intercoder reliability for validating conclusions drawn from
open-ended interview data”. In: Field methods 12.3, pp. 179–194. DOI: https://
doi.org/10.1177/1525822X0001200301.

Lazar, Jonathan, Jinjuan Heidi Feng, and Harry Hochheiser (May 2017a). Research Methods
in Human-Computer Interaction. English. 2nd edition. Cambridge, MA: Morgan Kaufmann.
ISBN: 978-0-12-805390-4.

— (2017b). Research methods in human-computer interaction. Morgan Kaufmann.
Lee, John D and Katrina A See (2004). “Trust in automation: Designing for appropriate

reliance”. In: Human factors 46.1, pp. 50–80. DOI: https://doi.org/10.1518/
hfes.46.1.50_30392.

Lee, Mina, Percy Liang, and Qian Yang (2022). “CoAuthor: Designing a Human-AI
Collaborative Writing Dataset for Exploring Language Model Capabilities”. In: arXiv
preprint arXiv:2201.06796.

Leeson, William et al. (2019). “Natural Language Processing (NLP) in qualitative public
health research: a proof of concept study”. In: International Journal of Qualitative
Methods 18, p. 1609406919887021.

Li, Mengxiang et al. (2013). “Helpfulness of online product reviews as seen by consumers:
Source and content features”. In: International Journal of Electronic Commerce 17.4,
pp. 101–136.

Liao, Q. Vera, Daniel Gruen, and Sarah Miller (2020). “Questioning the AI: Informing
Design Practices for Explainable AI User Experiences”. In: Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems. CHI ’20. Honolulu, HI, USA:
Association for Computing Machinery, pp. 1–15. ISBN: 9781450367080. DOI: 10.
1145/3313831.3376590. URL: https://doi.org/10.1145/3313831.
3376590.

Liew, Jasy Suet Yan et al. (2014). “Optimizing features in active machine learning for
complex qualitative content analysis”. In: Proceedings of the ACL 2014 Workshop on
Language Technologies and Computational Social Science, pp. 44–48.

Lindgren, Britt-Marie, Berit Lundman, and Ulla H Graneheim (2020). “Abstraction and
interpretation during the qualitative content analysis process”. In: International journal
of nursing studies 108, p. 103632.

https://doi.org/https://doi.org/10.1177/1525822X0001200301
https://doi.org/https://doi.org/10.1177/1525822X0001200301
https://doi.org/https://doi.org/10.1518/hfes.46.1.50_30392
https://doi.org/https://doi.org/10.1518/hfes.46.1.50_30392
https://doi.org/10.1145/3313831.3376590
https://doi.org/10.1145/3313831.3376590
https://doi.org/10.1145/3313831.3376590
https://doi.org/10.1145/3313831.3376590

Bibliography 154

Liu, Huiting et al. (2022). “Model Stability with Continuous Data Updates”. In: CoRR
abs/2201.05692. arXiv: 2201.05692. URL: https://arxiv.org/abs/2201.
05692.

Liu, Pengfei et al. (2023). “Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing”. In: ACM Computing Surveys 55.9, pp. 1–35.

Lubars, Brian and Chenhao Tan (2019). “Ask Not What AI Can Do, But What AI Should
Do: Towards a Framework of Task Delegability”. In: CoRR abs/1902.03245. arXiv:
1902.03245. URL: http://arxiv.org/abs/1902.03245.

Maguire, Moira and Brid Delahunt (2017). “Doing a thematic analysis: A practical,
step-by-step guide for learning and teaching scholars.” In: All Ireland Journal of
Higher Education 9.3.

Maher, Carmel et al. (2018). “Ensuring rigor in qualitative data analysis: A design
research approach to coding combining NVivo with traditional material methods”.
In: International journal of qualitative methods 17.1, p. 1609406918786362.

Malone, Thomas W. and Kevin Crowston (Mar. 1994). “The Interdisciplinary Study of
Coordination”. In: ACM Comput. Surv. 26.1, pp. 87–119. ISSN: 0360-0300. DOI: 10.
1145/174666.174668. URL: https://doi.org/10.1145/174666.174668.

Mäntylä, Mika V et al. (2015). “On rapid releases and software testing: a case study and
a semi-systematic literature review”. In: Empirical Software Engineering 20, pp. 1384–1425.

Marathe, Megh and Kentaro Toyama (2018a). “Semi-Automated Coding for Qualitative
Research: A User-Centered Inquiry and Initial Prototypes”. In: Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. CHI ’18. Montreal QC,
Canada: Association for Computing Machinery, pp. 1–12. ISBN: 9781450356206. DOI:
10.1145/3173574.3173922. URL: https://doi.org/10.1145/3173574.
3173922.

— (2018b). “Semi-automated coding for qualitative research: A user-centered inquiry
and initial prototypes”. In: Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, pp. 1–12.

Mayer, Roger C, James H Davis, and F David Schoorman (1995). “An integrative model
of organizational trust”. In: Academy of management review 20.3, pp. 709–734.

McDonald, Nora, Sarita Schoenebeck, and Andrea Forte (Nov. 2019). “Reliability and
Inter-Rater Reliability in Qualitative Research: Norms and Guidelines for CSCW
and HCI Practice”. In: Proc. ACM Hum.-Comput. Interact. 3.CSCW. DOI: 10.1145/
3359174. URL: https://doi.org/10.1145/3359174.

McHugh, Mary L (2012). “Interrater reliability: the kappa statistic”. In: Biochemia medica
22.3, pp. 276–282.

Metrics (n.d.). URL: https://darel13712.github.io/rs_metrics/metrics/.
Moravcsik, Andrew (2014). “Transparency: The Revolution in Qualitative Research”.

In: PS: Political Science; Politics 47.1, pp. 48–53. DOI: 10.1017/S1049096513001789.

https://arxiv.org/abs/2201.05692
https://arxiv.org/abs/2201.05692
https://arxiv.org/abs/2201.05692
https://arxiv.org/abs/1902.03245
http://arxiv.org/abs/1902.03245
https://doi.org/10.1145/174666.174668
https://doi.org/10.1145/174666.174668
https://doi.org/10.1145/174666.174668
https://doi.org/10.1145/3173574.3173922
https://doi.org/10.1145/3173574.3173922
https://doi.org/10.1145/3173574.3173922
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3359174
https://darel13712.github.io/rs_metrics/metrics/
https://doi.org/10.1017/S1049096513001789

Bibliography 155

Motamedi, Mohammad, Nikolay Sakharnykh, and Tim Kaldewey (2021). “A data-centric
approach for training deep neural networks with less data”. In: arXiv preprint arXiv:2110.03613.

Muller, Michael et al. (2016). “Machine learning and grounded theory method: convergence,
divergence, and combination”. In: Proceedings of the 19th international conference on
supporting group work, pp. 3–8.

Naim, Iftekhar et al. (2015). “Automated prediction and analysis of job interview performance:
The role of what you say and how you say it”. In: 2015 11th IEEE International
Conference and Workshops on Automatic Face and Gesture Recognition (FG). Vol. 1, pp. 1–6.
DOI: 10.1109/FG.2015.7163127.

Nassaji, Hossein (2015). “Qualitative and descriptive research: Data type versus data
analysis”. In: Language Teaching Research 19.2, pp. 129–132. DOI: 10.1177/1362168815572747.
eprint: https://doi.org/10.1177/1362168815572747. URL: https://
doi.org/10.1177/1362168815572747.

Nelson, Laura K (2020). “Computational grounded theory: A methodological framework”.
In: Sociological Methods & Research 49.1, pp. 3–42.

Nguyen, Ha et al. (2021). “Establishing trustworthiness through algorithmic approaches
to qualitative research”. In: International Conference on Quantitative Ethnography. Springer,
pp. 47–61.

Nielsen, Peter (2018). Collaborative Coding of Qualitative Data(White Paper).
Noble, Helen and Joanna Smith (2015). “Issues of validity and reliability in qualitative

research”. In: Evidence-Based Nursing 18.2, pp. 34–35. ISSN: 1367-6539. DOI: 10 .
1136/eb-2015-102054. URL: https://ebn.bmj.com/content/18/2/34.

Norman, Geoff (2010). “Likert scales, levels of measurement and the “laws” of statistics”.
In: Advances in health sciences education 15.5, pp. 625–632.

O’Connor, Cliodhna and Helene Joffe (2020). “Intercoder reliability in qualitative research:
debates and practical guidelines”. In: International journal of qualitative methods 19,
p. 1609406919899220. DOI: https://doi.org/10.1177/1609406919899220.

Olson, Gary M. and Judith S. Olson (Sept. 2000). “Distance Matters”. In: Hum.-Comput.
Interact. 15.2, pp. 139–178. ISSN: 0737-0024. DOI: 10.1207/S15327051HCI1523_4.
URL: https://doi.org/10.1207/S15327051HCI1523_4.

OpenAI (2023). GPT-4 Technical Report. arXiv: 2303.08774 [cs.CL].
Oswald, Austin G (2019). “Improving outcomes with qualitative data analysis software:

A reflective journey”. In: Qualitative Social Work 18.3, pp. 436–442. DOI: https:
//doi.org/10.1177/1473325017744860.

Papenmeier, Andrea, Dagmar Kern, Gwenn Englebienne, et al. (2022). “It’s Complicated:
The Relationship between User Trust, Model Accuracy and Explanations in AI”. In:
ACM Transactions on Computer-Human Interaction (TOCHI) 29.4, pp. 1–33.

https://doi.org/10.1109/FG.2015.7163127
https://doi.org/10.1177/1362168815572747
https://doi.org/10.1177/1362168815572747
https://doi.org/10.1177/1362168815572747
https://doi.org/10.1177/1362168815572747
https://doi.org/10.1136/eb-2015-102054
https://doi.org/10.1136/eb-2015-102054
https://ebn.bmj.com/content/18/2/34
https://doi.org/https://doi.org/10.1177/1609406919899220
https://doi.org/10.1207/S15327051HCI1523_4
https://doi.org/10.1207/S15327051HCI1523_4
https://arxiv.org/abs/2303.08774
https://doi.org/https://doi.org/10.1177/1473325017744860
https://doi.org/https://doi.org/10.1177/1473325017744860

Bibliography 156

Papenmeier, Andrea, Dagmar Kern, Daniel Hienert, et al. (2022). “How Accurate Does
It Feel?–Human Perception of Different Types of Classification Mistakes”. In: CHI
Conference on Human Factors in Computing Systems, pp. 1–13.

Paredes, Pablo et al. (2017). “Inquire: Large-scale early insight discovery for qualitative
research”. In: Proceedings of the 2017 ACM Conference on Computer Supported Cooperative
Work and Social Computing, pp. 1562–1575.

Patel, Harshada, Michael Pettitt, and John R. Wilson (2012). “Factors of collaborative
working: A framework for a collaboration model”. In: Applied Ergonomics 43.1, pp. 1–26.
ISSN: 0003-6870. DOI: https://doi.org/10.1016/j.apergo.2011.04.
009. URL: https://www.sciencedirect.com/science/article/pii/
S0003687011000573.

Pérez, I. J. et al. (2018). “On dynamic consensus processes in group decision making
problems”. In: Information Sciences 459, pp. 20–35. ISSN: 0020-0255. DOI: https://
doi.org/10.1016/j.ins.2018.05.017. URL: https://www.sciencedirect.
com/science/article/pii/S0020025518303724.

Porfirio, David et al. (2019). “Bodystorming human-robot interactions”. In: Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology, pp. 479–491.

Qin, Li and Sue Kong (2015). “Perceived helpfulness, perceived trustworthiness, and
their impact upon social commerce users’ intention to seek shopping recommendations”.
In: Journal of Internet Commerce 14.4, pp. 492–508.

Rechkemmer, Amy and Ming Yin (2022). “When Confidence Meets Accuracy: Exploring
the Effects of Multiple Performance Indicators on Trust in Machine Learning Models”.
In: CHI Conference on Human Factors in Computing Systems, pp. 1–14.

Richards, K Andrew R and Michael A Hemphill (2018). “A practical guide to collaborative
qualitative data analysis”. In: Journal of Teaching in Physical education 37.2, pp. 225–231.
DOI: https://doi.org/10.1123/jtpe.2017-0084.

Rietz, Tim and Alexander Maedche (2021). “Cody: An AI-Based System to Semi-Automate
Coding for Qualitative Research”. In: Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems. CHI ’21. Yokohama, Japan: Association for Computing
Machinery. ISBN: 9781450380966. DOI: 10.1145/3411764.3445591. URL: https:
//doi.org/10.1145/3411764.3445591.

Saldaña, Johnny (2021). The coding manual for qualitative researchers. SAGE publications
Ltd, pp. 1–440.

Scharowski, Nicolas et al. (2022). “Trust and Reliance in XAI–Distinguishing Between
Attitudinal and Behavioral Measures”. In: arXiv preprint arXiv:2203.12318.

Secure & Seamless Cloud Collaboration for Teams (n.d.). [EB/OL]. https://www.maxqda.
com/teamcloud Accessed January 27, 2022.

https://doi.org/https://doi.org/10.1016/j.apergo.2011.04.009
https://doi.org/https://doi.org/10.1016/j.apergo.2011.04.009
https://www.sciencedirect.com/science/article/pii/S0003687011000573
https://www.sciencedirect.com/science/article/pii/S0003687011000573
https://doi.org/https://doi.org/10.1016/j.ins.2018.05.017
https://doi.org/https://doi.org/10.1016/j.ins.2018.05.017
https://www.sciencedirect.com/science/article/pii/S0020025518303724
https://www.sciencedirect.com/science/article/pii/S0020025518303724
https://doi.org/https://doi.org/10.1123/jtpe.2017-0084
https://doi.org/10.1145/3411764.3445591
https://doi.org/10.1145/3411764.3445591
https://doi.org/10.1145/3411764.3445591
https://www.maxqda.com/teamcloud
https://www.maxqda.com/teamcloud

Bibliography 157

Shneiderman, Ben (2020). “Bridging the gap between ethics and practice: guidelines for
reliable, safe, and trustworthy human-centered AI systems”. In: ACM Transactions
on Interactive Intelligent Systems (TiiS) 10.4, pp. 1–31.

— (2022). Human-centered AI. Oxford University Press.
Smith, Jonathan A (2015). “Qualitative psychology: A practical guide to research methods”.

In: Qualitative psychology, pp. 1–312.
Snyder, Hannah (2019). “Literature review as a research methodology: An overview

and guidelines”. In: Journal of Business Research 104, pp. 333–339. ISSN: 0148-2963.
DOI: https://doi.org/10.1016/j.jbusres.2019.07.039. URL: https:
//www.sciencedirect.com/science/article/pii/S0148296319304564.

Stumpf, Simone et al. (2009). “Interacting meaningfully with machine learning systems:
Three experiments”. In: International journal of human-computer studies 67.8, pp. 639–662.

Sun, Yuqiang et al. (2023). “When GPT Meets Program Analysis: Towards Intelligent
Detection of Smart Contract Logic Vulnerabilities in GPTScan”. In: arXiv preprint
arXiv:2308.03314.

Tamm, Yan-Martin, Rinchin Damdinov, and Alexey Vasilev (2021). “Quality metrics in
recommender systems: Do we calculate metrics consistently?” In: Proceedings of the
15th ACM Conference on Recommender Systems, pp. 708–713.

Teherani, A et al. (Dec. 2015). “Choosing a Qualitative Research Approach”. In: J Grad
Med Educ 7.4, pp. 669–670. DOI: 10.4300/JGME-D-15-00414.1.

Thomas, Kenneth W (2008). “Thomas-kilmann conflict mode”. In: TKI Profile and Interpretive
Report 1.11.

Vasconcelos, Helena et al. (2023). “Explanations can reduce overreliance on ai systems
during decision-making”. In: Proceedings of the ACM on Human-Computer Interaction
7.CSCW1, pp. 1–38.

Vereschak, Oleksandra, Gilles Bailly, and Baptiste Caramiaux (2021). “How to evaluate
trust in AI-assisted decision making? A survey of empirical methodologies”. In:
Proceedings of the ACM on Human-Computer Interaction 5.CSCW2, pp. 1–39.

Vorm, Eric S (2018). “Assessing demand for transparency in intelligent systems using
machine learning”. In: 2018 Innovations in Intelligent Systems and Applications (INISTA).
IEEE, pp. 1–7.

Wang, Dakuo et al. (2020). “From human-human collaboration to Human-AI collaboration:
Designing AI systems that can work together with people”. In: Extended abstracts of
the 2020 CHI conference on human factors in computing systems, pp. 1–6.

Watkins, Daphne C. (2017). “Rapid and Rigorous Qualitative Data Analysis: The “RADaR”
Technique for Applied Research”. In: International Journal of Qualitative Methods 16.1,
p. 1609406917712131. DOI: 10.1177/1609406917712131. eprint: https://
doi.org/10.1177/1609406917712131. URL: https://doi.org/10.1177/
1609406917712131.

https://doi.org/https://doi.org/10.1016/j.jbusres.2019.07.039
https://www.sciencedirect.com/science/article/pii/S0148296319304564
https://www.sciencedirect.com/science/article/pii/S0148296319304564
https://doi.org/10.4300/JGME-D-15-00414.1
https://doi.org/10.1177/1609406917712131
https://doi.org/10.1177/1609406917712131
https://doi.org/10.1177/1609406917712131
https://doi.org/10.1177/1609406917712131
https://doi.org/10.1177/1609406917712131

Bibliography 158

Whang, Steven Euijong et al. (2021). “Data Collection and Quality Challenges in Deep
Learning: A Data-Centric AI Perspective”. In: arXiv preprint arXiv:2112.06409.

Wright, George and Peter Ayton (1988). “Decision time, subjective probability, and task
difficulty”. In: Memory & Cognition 16.2, pp. 176–185.

Wu, Tongshuang, Ellen Jiang, et al. (2022). “PromptChainer: Chaining Large Language
Model Prompts through Visual Programming”. In: Extended Abstracts of the 2022 CHI
Conference on Human Factors in Computing Systems. CHI EA ’22. New Orleans, LA,
USA: Association for Computing Machinery. ISBN: 9781450391566. DOI: 10.1145/
3491101.3519729. URL: https://doi.org/10.1145/3491101.3519729.

Wu, Tongshuang, Michael Terry, and Carrie Jun Cai (2022). “AI Chains: Transparent
and Controllable Human-AI Interaction by Chaining Large Language Model Prompts”.
In: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
CHI ’22. <conf-loc>, <city>New Orleans</city>, <state>LA</state>, <country>USA</country>,
</conf-loc>: Association for Computing Machinery. ISBN: 9781450391573. DOI: 10.
1145/3491102.3517582. URL: https://doi.org/10.1145/3491102.
3517582.

Xiao, Ziang (2023). “Seeing us through machines: designing and building conversational
AI to understand humans”. PhD thesis. University of Illinois at Urbana-Champaign.

Xiao, Ziang et al. (2023). “Supporting Qualitative Analysis with Large Language Models:
Combining Codebook with GPT-3 for Deductive Coding”. In: Companion Proceedings
of the 28th International Conference on Intelligent User Interfaces. IUI ’23 Companion.
Sydney, NSW, Australia: Association for Computing Machinery, pp. 75–78. ISBN:
9798400701078. DOI: 10.1145/3581754.3584136. URL: https://doi.org/
10.1145/3581754.3584136.

Yan, Jasy Liew Suet, Nancy McCracken, and Kevin Crowston (2014). “Semi-automatic
content analysis of qualitative data”. In: IConference 2014 Proceedings.

Yin, Ming, Jennifer Wortman Vaughan, and Hanna Wallach (2019). “Understanding the
effect of accuracy on trust in machine learning models”. In: Proceedings of the 2019
chi conference on human factors in computing systems, pp. 1–12.

Zade, Himanshu et al. (2018). “Conceptualizing Disagreement in Qualitative Coding”.
In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
CHI ’18. Montreal QC, Canada: Association for Computing Machinery, pp. 1–11.
ISBN: 9781450356206. DOI: 10.1145/3173574.3173733. URL: https://doi.
org/10.1145/3173574.3173733.

Zhang, Chaoning et al. (2023). “A complete survey on generative ai (aigc): Is chatgpt
from gpt-4 to gpt-5 all you need?” In: arXiv preprint arXiv:2303.11717.

Zhang, Zheng et al. (2023). VISAR: A Human-AI Argumentative Writing Assistant with
Visual Programming and Rapid Draft Prototyping. arXiv: 2304.07810 [cs.HC].

https://doi.org/10.1145/3491101.3519729
https://doi.org/10.1145/3491101.3519729
https://doi.org/10.1145/3491101.3519729
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3581754.3584136
https://doi.org/10.1145/3581754.3584136
https://doi.org/10.1145/3581754.3584136
https://doi.org/10.1145/3173574.3173733
https://doi.org/10.1145/3173574.3173733
https://doi.org/10.1145/3173574.3173733
https://arxiv.org/abs/2304.07810

	PhD Thesis Examination Committee
	Abstract
	Publications
	Acknowledgements
	Introduction
	Research Motivations
	Research Goals
	Term Definitions and Related Terms
	Research Questions and Scopes
	Examining the Effectiveness of AI-assisted Human-to-Human Collaboration in Qualitative Analysis
	Investigating the Impact of Human-AI Interaction on User Trust and Reliance in AI-Assisted Qualitative Coding
	Building A Lower-barrier, Rigorous Workflow for Collaborative Qualitative Analysis with Large Language Models

	Research Contributions
	Systems and Tools Contributions
	CoAIcoder: A Tool for Human-to-Human Collaboration via AI within Qualitative Coding Team
	CollabCoder: A Tool for Collaborative Qualitative Analysis with Large Language Models

	Empirical Contributions
	Exploration in CQA Practices, Challenges, and Expectations
	Evaluation of CoAIcoder with Three Factors: With/Without AI Model, Synchrony, and Shared/Not Shared Model
	Evaluation of User Trust and Reliance on the AIcoder System
	Evaluation of CollabCoder

	Choice of Research Topic
	My Research Journey during the COVID-19 Outbreak
	Two Questions to Qualitative Analysis
	A New Start: Using AI for Qualitative Analysis
	A Paper on This Topic Emerges at CHI
	At Last: Pathway to Integrating AI in Qualitative Analysis

	Background and Related Work
	Qualitative Analysis and Its Methods
	What is Qualitative Analysis?
	Methodology: Grounded Theory, thematic analysis, and others
	Collaborative Qualitative Analysis

	Human, Traditional AI, and Qualitative Analysis
	Definition of Human-AI Collaboration, Human-AI Interaction, and Human-Centric AI
	(Semi)-Automating Qualitative Analysis
	(Semi)-Automating Collaborative Qualitative Analysis

	Generative AI and Qualitative Analysis
	Large Language Models and Generative AI
	Generative AI and Human-LLM Collaboration
	Using Generative AI to Support Qualitative Analysis

	Examining the Effectiveness of AI-assisted Human-to-Human Collaboration in Qualitative Analysis
	Goals and Context
	Formative Interview
	Methodology
	Findings
	Basic CQA Process
	Difficulties in Performing Collaborative Qualitative Analysis
	Suggestions for AI-assisted CQA tools

	Study Limitation
	Discussion

	CoAIcoder: System Design
	Design Considerations
	Interface
	AI Model
	Training and Updating Pipeline
	Saving and Retrieving Data
	Training and Reloading NLU Models in (Near) Real Time

	User Evaluation Design
	Task
	Independent Variables (IVs) and Conditions
	Participants
	Procedure
	Dependent Variables (DVs)
	Coding Time
	Inter-rater reliability (IRR)
	Code Diversity
	Code Coverage

	Data Analysis
	Step 1: Data Integrity and Quality Checking
	Step 2: Generating Initial Codebooks
	Step 3: Measuring DVs
	Step 4: Statistical Analysis

	Quantitative Results
	Coding Time
	Total Time
	Phase 1
	Phase 2
	Phase 3

	Inter-rater Reliability
	Phase 1
	Phase 3

	Code and Subcode Diversity
	Phase 1
	Phase 2

	Code and Subcode Coverage
	Phase 1
	Phase 2

	Triangulation with Qualitative Results
	Lower Initial Coding Time
	Higher Initial IRR
	Lower Diversity
	Effect of Synchrony
	Positive Feedback from Shared Model Conditions
	Similarity of Codebooks across Conditions

	Discussion
	Trade-off: Coding Efficiency vs. Coding Quality
	AI & Shared Model Fosters Strong Discussions
	Potential Pitfalls

	Is Shared Model best for CQA? Considering Different Application Scenarios
	Supporting Different Contexts with Different Independence Level.
	Support Different User Groups with AI & Shared Model

	Design Implications
	Impact of Coding Granularity on Human-AI collaboration
	Establishing Optimal Coding Granularity for both AI and Human Coders
	Impact of Coding Granularity on IRR Calculation
	Impact of Coding Granularity on Stability of Suggestions

	Trust and User Expectations
	Calibrating Users' Expectation Before Coding
	Can Imperfect Suggestions Help?

	Limitations and Future Work
	Conclusion

	Investigating the Impact of Human-AI Interaction on User Trust and Reliance in AI-Assisted Qualitative Coding
	Motivation
	Background and Related Work
	Trust and Reliance with AIQCs
	Human-AI Interaction within AIQCs

	AIcoder: AI-assisted Qualitative Coding Tool
	Study Design
	Study Task
	Dataset
	Pilot Test

	Independent Variables and Conditions
	Participants
	Procedure
	Dependent Variables
	Model Performance
	Decision Time
	Coding Behavior
	Selecting Rate
	Perceived Trustworthiness and Perceived Helpfulness
	Subjective Preferences

	Data Analysis
	Quantitative analysis
	Qualitative analysis

	RQ1: Impact on Model Performance
	Summary

	RQ2: Impact on Decision Time and Coding Behavior
	Coding Behavior
	Decision Time
	Summary

	RQ3: Impact on User Reliance
	Selecting Rate
	Over-reliance concerns
	Comparing the Coding Results With and Without AI Assistance

	RQ4: Impact on Perceived Trustworthiness and Helpfulness
	Perceived Trustworthiness
	Perceived Helpfulness

	RQ5: Impact on Subjective Preferences
	User Preferred Selective
	Imperfect AI Suggestions Still Contribute Value
	Code Suggestions Promote Consistency
	Too Long Text Selections (Paragraph) Presents Challenges

	Discussion
	Task Difficulty Across Conditions for Open Coding
	Qualitative Open Coding: A Series of Distinct Tasks Rather than a Singular Whole
	Challenging Paragraph Conditions
	The Complexity of Long Codes Compared to Short Codes and Mixed Codes

	Reliance and Perceptions Discrepancies Due to Varied Task Difficulties
	Higher Reliance for Simpler Tasks
	Contrasting Reliance and Perceived Helpfulness in Complex Tasks

	Over- and under-reliance on AIQCs
	Reasons for Under-reliance
	Over-reliance Risk

	Optimal Code Granularity Varies Between Users and AI
	Coding Strategies in Real Life
	Selective is Best for Coding
	Sentence for Collaborative Coding
	Paragraph for Summarizing Long Texts

	Implications for Design
	Fostering Trustworthiness during Under-reliance on AIQCs
	Offering Extensive and Modifiable Suggestions
	Exploiting Larger Training Datasets
	Facilitating Open Coding Through Multifaceted Models

	Mitigating Over-reliance to Prevent Shallow Codes
	Implementing a Delay in Suggestions Display upon Selection.
	Providing Explanations for AI Suggestions

	Limitations and Future Work
	Conclusion

	Building A Lower-barrier, Rigorous Workflow for Collaborative Qualitative Analysis with Large Language Models
	Motivation
	Design Goals
	Method
	Results for Design Goals

	CollabCoder System
	CollabCoder Workflow & Usage Scenario
	Phase 1: Independent Open Coding
	Phase 2: Code Merging and Discussion
	Phase 3: Code Group Generation

	Key Features
	Three-phase Interfaces
	Individual Workspace vs. Shared Workspace
	Web-based Platform
	Consistent Data Units for All Users
	LLMs-generated Coding Suggestions Once the User Requests
	A Shared Workspace for Deeper Discussion
	LLMs as a Group Recommender System
	Formation of LLMs-based Code Groups

	Prompts Design
	Phase 1: Code Suggestions Recommendation
	Phase 2: Code Decisions Recommendation
	Phase3: Code Groups Recommendation

	System Implementation
	Web Application
	Data Pre-processing
	Semantic Similarity and IRR

	User Evaluation
	Participants and Ethics
	Datasets
	Conditions
	Procedure
	Introduction to the Task
	Specific Process
	Data Recording

	Results
	RQ1: Can CollabCoder support qualitative coders to conduct CQA effectively?
	Key Findings (KF) on features that support CQA
	Key Findings (KF) on collaboration behaviors with CollabCoder supports

	RQ2. How does CollabCoder compare to currently available tools like Atlas.ti Web?
	Post-study questionnaire
	Log data analysis

	RQ3. How can the design of CollabCoder be improved?

	Discussion and Design Implications
	Facilitating Rigorous, Lower-barrier CQA Process through Workflow Design Aligned with Theories
	LLMs as ``Suggestion Provider'' in Open Coding: Helper, not Replacement.
	Utilizing LLMs to Reduce Cognitive Burden
	Improving LLMs' Suggestions Quality
	LLMs should Remain a Helper

	LLMs as ``Mediator'' and ``Facilitator'' in Coding Discussion
	LLMs as a ``Mediator'' in Group Decision-Making.
	LLMs as ``Facilitator'' in Streamlining Primary Code Grouping

	Limitations and Future Work
	Conclusion

	Discussion and Future Work
	Towards Automating Qualitative Analysis with Large Language Models
	Constructing Frameworks of Human-LLM Collaboration
	Augmenting LLMs for Other Areas like Code Auditing

	Conclusion
	Appendix for CoAIcoder
	Study Protocol
	Welcome to AIQA Study!
	Task Introduction
	Introduction to Three Phases
	Post-Study Interview Questions

	Intuitive comparison of the results across four conditions

	Appendix for CollabCoder
	Different CQA Software
	The primary version of CollabCoder
	Prompts used in CollabCoder
	Demographics of Participants
	Observation notes for participants

	Bibliography

