
A Taxonomy for Human-LLM Interaction Modes
Jie Gao

Singapore-MIT Alliance for Research
and Technology

Singapore
jie.gao@smart.mit.edu

Erika Lee∗
University of California San Diego

San Diego, CA, USA
erl015@ucsd.edu

Zhiyao Shu∗
University of California, Berkeley

Berkeley, CA, USA
yaoshu0326@berkeley.edu

Michelle Vaccaro
MIT Center for Collective Intelligence
Massachusetts Institute of Technology

Cambridge, USA
vaccaro@mit.edu

Xiaoxian Zhang∗
National University of Singapore

Singapore
xiaoxianzhang@u.nus.edu

Junming Cao
Fudan University
Shanghai, China

21110240004@m.fudan.edu.cn

Thomas Malone
MIT Center for Collective Intelligence
Massachusetts Institute of Technology

Cambridge, USA
malone@mit.edu

ABSTRACT
With the release of ChatGPT, many LLM-powered systems have
been designed to expand the ways humans can interact with LLMs,
enhancing their capabilities. The interaction between humans and
LLMs in these systems represents a paradigm shift compared to
traditional human-software interaction. From a software engineer-
ing (SE) and human-computer interaction (HCI) perspective, we
conducted a systematic literature review across major AI and HCI
venues and analyzed the system architectures of human-LLM teams
in 267 papers. Through this analysis, we identified the fundamen-
tal building blocks: eight key elements and their interfaces, four
element behaviors, and a standard human-LLM interaction pro-
cess. Based on these insights, we developed a taxonomy of seven
key interaction modes and 22 submodes. We explored the ideal
design space in which these atomic modes can be combined and
outlined application scenarios where these modes are applicable.
Additionally, we conducted a case study on real-world applications
to demonstrate the taxonomy’s practical use. We envision this work
as a contribution to the theoretical foundations for designing and
developing future LLM-powered applications.

CCS CONCEPTS
• Human-centered computing→ HCI theory, concepts and
models.
∗This work was done when working as research interns at Singapore-MIT Alliance for
Research and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

KEYWORDS
Large Language Model, Interaction Modes, Human-LLM Interac-
tion, User Interface, Conversational AI, LLM System

ACM Reference Format:
Jie Gao, Erika Lee, Zhiyao Shu, Michelle Vaccaro, Xiaoxian Zhang, Junming
Cao, and Thomas Malone. 2018. A Taxonomy for Human-LLM Interaction
Modes. In Proceedings of Make sure to enter the correct conference title from
your rights confirmation emai (Conference acronym ’XX). ACM, New York,
NY, USA, 13 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Every use of computers involves an interaction mode—a pattern
of interaction between the user and the computer. This concept
has evolved significantly, starting from command-line interfaces,
advancing to the direct manipulation of on-screen items, and pro-
gressing to engaging conversations with chatbots, etc. [51, 52].

In software engineering, patterns are mainly referring to soft-
ware architecture design patterns [16]–standardized solutions to
common problems in software design. These patterns provide reusable
blueprints that have proven effective in the past, which developers
can readily apply or adapt.

Inspired by software design patterns, we explore the concept
of the human-LLM team, where humans interact with LLMs (via
command-line interfaces) or LLM-powered systems (which inte-
grate LLMs as core components). The human-LLM team is similar to
software design in that its elements are structured to work together
to generate input and output. The key difference is that traditionally,
humans are merely users, providing limited and fixed input (e.g.,
clicking buttons, choosing from dropdown list) to software, relying
the software to provide information. In contrast, within an LLM-
powered system, humans become both users and elements, gener-
ating essential interaction information through prompts. Without
prompts, the LLM system can scarcely provide services or follow
user guidance.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

As both users and integral elements of the system, human-LLM
interaction can take a simple form—where humans write prompts,
and the LLM processes them to generate responses. However, inter-
actions can also become more complex when LLMs are integrated
into systems with additional elements. For example, an LLM may
be embedded within a structured user interface that enables users
to craft prompts by clicking buttons, minimizing the need to write
prompts from scratch.

With the emergence of more LLM-powered systems, such as Cur-
sor1, Copilot, and Notion AI, a spectrum of interactions has devel-
oped, influencing design decisions in the development of these sys-
tems. What are the typical interactions between humans and
LLMs in human-LLM teams? Do distinct interaction modes2
already exist? While no existing work directly answers these
questions, several emerging concepts [17, 36, 53, 60] are highly
relevant. Notably, Subramonyam et al. [53] introduce the “design
pattern” concept, including many design patterns like “visually
track prompts and outputs.” This pattern features node-based inter-
faces that enable users to visualize multiple outputs (nodes), trace
their connections (edges), and thus compare and evaluate different
input-output variations.

Taking a different perspective from Subramonyam et al., we
apply software architecture analysis methods [2, 9] to examine the
architecture of human-LLM teams. Our study primarily explores
three research questions:

• RQ1: What are the fundamental building blocks of human-LLM
teams, including their elements and relationships? (Addressed
in Section 4.)

• RQ2: What are the typical ways of organizing these elements
into collaborative structures? (Addressed in Section 5.)

• RQ3: How can the taxonomy of interaction modes be applied in
practice? (Addressed in Sections 7, 6, and 8.)

To explore our research questions, we conducted a systematic
review of papers on LLM-powered systems from major AI, HCI,
and SE3 venues published between 2021 and October 2024. Our
analysis of these papers involved three rounds of qualitative coding
(1st round: N = 1009; 2nd round: N = 345), resulting in a final
corpus of 267 papers. From this, we identified 8 key elements and
their interfaces, 4 element behaviors, and a standard human-LLM
interaction process. Ultimately, we categorized 7 key interaction
modes and 22 variations (i.e., submodes) within our taxonomy.
We further grouped these modes into 4 primary clusters based on
similarities in their usage scenarios. Finally, we explored the design
spaces of LLM-powered systems and conducted a case study to
demonstrate their potential real-world applications.

In the end, we discuss the conceptual overlap with existing soft-
ware design patterns. We expect that this taxonomy could serve as
a foundation for analyzing the architecture of human-LLM teams,

1https://www.cursor.com/
2While we previously mentioned patterns, we intentionally avoid terms like “interac-
tion patterns” because patterns typically refer to reusable and well-tested modes. Since
LLM-powered systems have only recently gained widespread popularity (following
the release of ChatGPT), we use “mode” as a more cautious term to describe current
interaction dynamics without implying they are fully established or reusable.
3But we were unable to find enough relevant papers for our analysis from SE venues.

ultimately shaping the design of LLM-powered systems. We envi-
sion this work as a theoretical contribution to software engineering
for AI. Our data is available in Section 12.
2 DEFINITIONS AND SCOPES

Definitions. To establish a clear communication framework, we
define the following key terms used in this paper:
• LLM-powered system: A system consisting of the LLM, which
provides core intelligence, along with the elements that facilitate
user interaction with the LLM.

• Human-LLM Team: A team comprising both humans and
LLMs, where they interact to complete a task. In this setup,
humans are an integral part of the execution process—they must
dynamically provide prompts, as the LLM generally cannot pro-
ceed with the task autonomously without human input.

• Human-LLM Interaction: In a human-LLM team, humans and
LLMs interact to mutually influence each other’s perception of
information and collaborate to complete the task.

• Interaction modes: The various types of human-LLM inter-
action processes. We intentionally avoid using the term “inter-
action patterns,” as patterns typically refer to reusable, well-
established solutions. In contrast, the modes we identify have
largely emerged within the past two years. Therefore, we fo-
cus specifically on these modes—as they represent current prac-
tices—to gain insights into system development and architecture.

Scope on models. While generative AI can be broadly applied
to build AI systems, analyzing the entire spectrum of generative
AI models is beyond the scope of this work. Therefore, we focus
specifically on 1) LLMs and 2) their most relevant models, which
we categorize into three groups:
• Large Language Models (LLMs): These models focus on gen-
erative AI model which support basic text-to-text generation,
like GPT-3, GPT-3.5, Claude, Gemini, Llama 2, OpenAI o1, etc.

• Multi-modal Large Language Models (MLLMs): These mod-
els handle interactions that combine text with other modalities,
such as images, videos, and audio, like GPT-4, GPT-4o.

• Models with Similar Input-Output Patterns: Although this
category does not strictly fall under language models, it includes
models that share similar input-output patterns with LLMs, such
as text-to-text or text-to-image transformations (e.g., Stable Dif-
fusion models). These models are often integrated alongside
LLMs in LLM-powered systems.

Scope on Design and Architecture analysis of Human-LLM
team. Software architecture typically plays a key role as a bridge
between requirements and implementation [19]. Due to differences
in focus, there are multiple perspectives for describing software
architecture [9]. Our focus is on a high-level conceptual architecture
description, similar to the “container diagram” in the C4 Model for
visualizing software architecture4, rather than a detailed, low-level
breakdown of specific software implementation components.
3 METHOD
To build our taxonomy of different human-LLM interaction modes,
we conducted a systematic literature review following the PRISMA
guidelines [39]. Figure 1 illustrates the flow of these steps.
4https://c4model.com/diagrams/component

https://www.cursor.com/
https://c4model.com/diagrams/component


A Taxonomy for Human-LLM Interaction Modes Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Step 1: Identification

27 potential HCI & AI Venues were identified

Step 2: Searching and Screening

1009 papers from 23 venues were collected based on 
keyword, title and abstract relevance

Step 3: First Round Qualitative Coding

345 papers from 16 venues were relevant, 
664 papers were excluded based on 
exclusion criteria

Final Corpus
(265 papers)

Step 4: Second Round Qualitative Coding

A small sample of papers were analysed, and initial codebook 
(v1) was developed; The codebook is tested on rest papers, with
new codes were added to the codebook (v2)

Codebook (v2) was applied to all papers (N=345), 
modes definitions and inclusion criteria were refined 
again (v3) 

• 7 main interaction modes
• 22 sub-interaction modes
• 8 key elements
• 4 key element behaviors

Relevance Checking Codebook Development

Step 5: Third Round Qualitative Coding

With Codebook (v3), all papers (N=345) were annotated 
for last round. 265 papers were left in the final corpus.

Codebook Refinement Codebook Application

Figure 1: Overview of literature review process.

3.1 Identification process
Given the interdisciplinary nature of studies about human-LLM in-
teractions, we performed our initial search in multiple conferences
and journals within a broad list of Software engineering, HCI and
AI venues. We found only 27 of them relevant, including major HCI
venues like CHI, UIST, CSCW, TOCHI, IUI, DIS, C&C, and CI, and
major AI venues like ACL, EMNLP, NAACL, TACL, EACL, IJCAI,
CVPR, ICML. While arXiv contains a significant amount of the
latest research on LLM-powered applications, we did not include
it due to the substantial overlap with papers from other venues.
Additionally, we wanted to prioritize peer-reviewed publications.
3.2 Searching and Screening Process
To create the search string used to identify publications, we began
by distilling the relevant components of research about human-LLM
team. Specifically, these works involve: (1) a human component,
and (2) an LLM component, through which the human and LLM
interact. We developed a list of synonyms for each component and
combined them using Boolean operations. Specifically, we used the
following search string:
• Human: "Human OR Human-LLM OR Human-AI OR Human-
centric OR Human-in-the-loop";

• LLM: "Large Language Models OR LLM(s) OR Generative AI OR
Prompting OR Prompt(s)";

• Specific Language Models and Multimodal Language Mod-
els: "GPT OR GPT-4o OR ChatGPT OR Claude (Anthropic) OR
Midjourney OR Sora OR Gemini OR DALLE3".
We conducted searches using (1) AND (2) OR (3) across each

venue’s proceedings or journal issues. We screened titles and ab-
stracts to identify relevant papers. Papers focusing solely on the
technical aspects of LLMs without involving human interaction
were excluded at this stage. After screening, 1009 papers from 23
venues were included for further eligibility checking. Our final
search included papers and posters published between January
2021 and October 2024, following OpenAI’s release of GPT-35.
3.3 First Round Qualitative Coding (N=1009)
We conducted the first round of qualitative coding for eligibility as-
sessment and the development of coding dimensions, following the
collaborative qualitative coding method [46]. Specifically, we began

5https://openai.com/index/gpt-3-apps/

by analyzing a small initial sample of papers to identify prelimi-
nary classification categories and primary inclusion criteria. These
initial classification categories and inclusion criteria were shared
with four authors who participated in qualitative coding, who then
performed coding and attended weekly group meetings to resolve
conflicts and address ambiguities. Once each author achieved an
interrater reliability of over 0.75 (cohen’s kappa) with the lead au-
thor, the four authors independently coded the remaining papers,
discussing ambiguous cases during the weekly team meetings.

In total, 1009 papers underwent first round qualitative coding for
relevance checking. At the same time, if a paper was deemed eligible
after examining its content, we then performed coding dimension
analysis. We summarized the inclusion criteria in Section 3.3.1 and
coding dimensions in Section 3.3.2.

3.3.1 Inclusion Criteria. To understand different human-LLM in-
teraction modes, we focused on papers that propose, facilitate, or
evaluate processes where humans and LLMs work together to per-
form a task. Specifically:

• LLM: The paper must involve content generation using an LLM
or relevant models as described in Section 2. Consequently, pa-
pers including new LLM-powered systems were included. In
contrast, papers were excluded if they ONLY using traditional
language models like BERT for conventional NLP tasks such as
text classification or label prediction.

• Human: The paper must include human aspects; those that
solely evaluate LLM performance based on prompts from non-
user sources (e.g., using LLMs for data annotation to assess task
performance) were excluded.

• Interaction: The paper must describe a clear process for human-
LLM interaction, including prompt crafting and response re-
viewing. Papers without a well-defined interaction process were
excluded.

This process of assessing the eligibility of papers resulted
in a version of corpus of 345 papers.

3.3.2 Coding Dimensions: Weanalysed coding dimensions by adopt-
ing a software architecture perspective [9, 19] and a process per-
spective for human-LLM interaction based on the process model
concept [37] to understand how humans and LLMs dynamically
work and interact to perform tasks. In the end, we identified fol-
lowing key coding dimensions:

• Element: A component within an LLM-powered system that
possesses autonomy and the ability to perform actions influ-
encing an interaction, e.g., Human, LLM, and other computing
components.

• Behavior: The specific actions an element can performwhen hu-
mans and LLMs collaborate on a task. These behaviors manifest
through a series of activities within a human-LLM interaction
process.

• Process: The structured sequence of interactions between hu-
mans and an LLM system as they work together to complete a
task.

• Interaction mode: A distinct type of process through which
humans collaborate with LLM systems to accomplish tasks and
achieve their goals.

https://openai.com/index/gpt-3-apps/


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

3.4 Second and Third Qualitative Coding
The second round of qualitative coding was conducted because
new interaction modes emerged during the initial coding process.
This required many initially assigned interaction modes to be re-
classified or have their names and meanings revised. As a result, all
345 papers were assigned newly named or reclassified interaction
modes.

We then conducted the third round of qualitative coding to
adopt a multi-mode perspective, allowing each paper to be assigned
multiple interaction modes. During the second round of coding,
we observed that many papers actually encompassed more than
one interaction mode, challenging our initial assumption that each
paper had a single primary interaction mode while overlooking
others. In the end, each paper was assigned multiple interaction
modes as well as multiple elements.
3.5 Final Corpus
After the identification, searching and screening, and three rounds
of qualitative coding, we included 267 papers in the final corpus.
Notably, the majority of papers came from ACM CHI, a top confer-
ence in the field of human-computer interaction. In the end, a total
of 7 main interaction modes and 22 sub-interaction modes were
identified. We introduce our main findings in following sections.

4 HUMAN-LLM TEAM BUILDING BLOCKS
We first identify the elements of the human-LLM team, along with
their interfaces (inputs and outputs), as well as the behaviors of
these elements within the human-LLM interaction process. This
examination follows the “view template” used for documenting
software architecture [2]. Moreover, we analyze the overall input
and output, focusing on how input data—ranging from task goals
to LLM-generated responses—is transformed throughout the inter-
action process. Table 1 showed elements and other details.
4.1 8 Elements and Their Interfaces
First, the elements in the system can be either humans or LLM
systems. We identified two key groups: Humans (2 elements) and
LLM System (comprising 2 LLM elements and 4 supporting ele-
ments). The primary distinction between humans, LLMs, and other
elements lies in their roles within the interaction. Humans and
LLMs actively perform behaviors such as crafting prompts, whereas
supporting elements primarily assist other elements in completing
tasks. For example, components such as the graphical UI, knowl-
edge base, multimodal component, and external tools mainly serve
to support the behaviors of the key elements. Table 1 presents their
main interfaces, including inputs and outputs.
4.2 4 Key Elements Behaviors
Second, we identified four key behavioral elements in the standard
human-LLM interaction process: planning, generating, evaluating,
and revising. Figure 2 illustrated this process. These behaviors align
with those in Norman’s seven-stage model of interaction 6. Since
they can occur sequentially in human-LLM interactions, we also
use them to represent distinct phases where these behaviors take
place. Additionally, as illustrated in Figure 2, the interaction process
is often iterative, meaning certain behaviors—such as replanning or

6https://www.educative.io/courses/intro-human-computer-interaction/normans-
model-of-interaction

Table 1: Elements and details.
Element Details
Human
Single User &
User Group Input: Task goals

Output: Prompts, Revised prompts, Feedback
Behaviors: Plan, Evaluate, Revise

LLM
LLM (Single) Input: Prompts, Regeneration requests

Output: Generated content (text, images, etc.)
Behaviors: Generate

LLM Team Input: Prompts, Regeneration requests
Output:Generated content (collaborative gen-
eration)
Behaviors: Generate

Other Compo-
nents
Graphical UI Input: User interactions (click, filled content)

Output: Reformatted output
Behaviors: (Supporting) Plan, Evaluate, Re-
vise

Knowledge
Base Input: Prompts

Output: Knowledge matched with prompts
Behaviors: (Supporting) Generate

Multi-modal
Component Input:Mixed inputs (text, images, video)

Output:Multi-modal inputs for LLMs, Read-
able Content for Humans
Behaviors: (Supporting) Generate, Evaluate

External Tool Input: Tool usage specifications in prompts
Output: Enhanced content
Behaviors: (Supporting) Generate, Evaluate

regenerating prompts—may repeat. Below, we provide a common
definition for each of these four key behaviors:
(1) Planning: In this phase, the goal of the prompting interaction

is set by the main element (the human), potentially assisted by
other elements such as the LLM or a graphical UI, which provides
a platform for users to craft prompts. Additionally, multimodal
components may help convert certain parts of the user’s input
into textual information that the LLM can process.

(2) Generating: This phase is central to the entire interaction—an
LLM or a group of LLMs generates responses to the human’s
prompts. During this process, they may leverage external tools
(e.g., web search) or perform semantic matching with a knowl-
edge base to provide more domain-specific responses.

(3) Evaluating: In this phase, users evaluate the LLM’s responses and
decide whether to accept them, regenerate them, or even replan
the prompts. This evaluation may be supported by a graphical UI
(e.g., displaying the response), multimodal components (e.g., text-
to-audio conversion), or external tools (e.g., a code interpreter)
that enhance the presentation of responses.

(4) Revising: After evaluating the LLM’s response, users may be
satisfiedwith the results but still choose to revise them before use.
Even at this stage, users might decide to regenerate responses or
replan prompts. This process is often supported by a graphical
UI.

4.3 A Standard Human-LLM Interaction Process
With the above key elements and their interfaces and behaviors, we
are able to describe a standard or a typical standard human-LLM

https://www.educative.io/courses/intro-human-computer-interaction/normans-model-of-interaction
https://www.educative.io/courses/intro-human-computer-interaction/normans-model-of-interaction


A Taxonomy for Human-LLM Interaction Modes Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Replanning

GeneratingPlanning Evaluating Revising

OUTPUTINPUT

1

2

3

4

5

6

7

Human-LLM Interaction Process

Regenerating

Replanning

Mode 1: Standard Prompting with 
Prompting Technique

Mode 4: Multi-LLM Collaboration

Mode 5: Multi-modal Component

Mode 6: LLM for Knowledge Retrieval

Mode 7: LLM for Tool Usage

Mode 2: Graphical User Interface

Mode 3: LLM for User Group

P
ro

m
p

ts

L
L

M
 

R
e

sp
o

n
se

s

H
u

m
a

n
 

E
va

lu
at

io
n

Human

User Group

LLM

LLM Team

UI

Multi-modal 
Component

Knowledge Base

External Tool

Figure 2: A Standard Human-LLM Interaction Process & Pro-
cesses for Seven Interaction Modes. This diagram highlights
only the key behaviors in their corresponding phases, though
each phase may involve additional complexities, such as the
inclusion of additional elements. For example, during the
planning process, a human might request the LLM to gener-
ate prompts.

interaction process, with only a human and an LLM is involved,
as opposed to those processes other components are involved. As
shown in Figure 2, the process generally begins with inputting a task
description, elements (e.g., human user) then plan how the task will
be executed, such as proposing prompts to be used in the generation
phase. The prompts are then used to generate responses with textual
outputs. The human user then compares the generated response
against the overall task objectives to determine if it meets the goals.
If satisfied with the response, minimal revisions are made, and
the results are directly used. If not satisfied, the user may request
the LLM to regenerate the response, often revising the prompts to
improve subsequent outputs. Finally, the human-LLM interaction
concludes, with the evaluated and revised output serving as the
final output.

5 TAXONOMY OF INTERACTION MODES
As additional elements are introduced, LLM-powered systems and
their interactions with humans become increasingly complex. Since
many systems are having mutiple modes as combination modes,
we focus on identifying “automatic” modes—those that are inde-
pendent, indivisible, and mutually exclusive. In particular, Mode 1
represents standard prompting, which does not involve additional
elements but serves as the foundational automatic mode for Modes
2–7. Understanding Mode 1 is therefore essential for grasping the
entire taxonomy. Just as atoms combine to form molecules, these
interaction modes can be integrated to create diverse human-LLM
interaction processes. We provide further details in Section 6.

5.1 Mode 1. Standard Prompting with Promting
Technique

This mode is exactly the same as the standard human-LLM interac-
tion process. We introduce this mode as a starting point for other
interaction modes—much like water serves as the primary compo-
nent of many other fluids. While it may seem basic, it is crucial for

understanding potential variations and extensions of human-LLM
interactions.

Elements involved: Human, LLM
Aspects that can vary: The prompting technique used during

planning phase.
Variations: The key variations occur in elements behavior dur-

ing the planning stage, where users can formulate different types
of prompts using various prompting techniques. Below, we outline
several key variations identified in our literature review:
(1) Submode 1.1. User/LLM uses reasoning in prompting. User decom-

poses the task into logical steps or step-by-step pieces [57, 69].
For example, in a code-repairing task, the process can be divided
into code verification and code modification [59, 76]. Similarly,
argumentative writing can be broken down into writing a series
of individual points, sentences, and paragraphs [73].

(2) Submode 1.2. User asks LLM to act as a persona. LLM performance
can be enhanced by assigning it a specific role that mimics human
expertise, such as an instructor with a sense of humor [30], an
expert teacher for communication coaching [21], or even a group
discussion participant providing challenging opinions [7].

(3) Submode 1.3. User incorporates knowledge framework in prompt-
ing. By incorporating a predefined knowledge framework into
the prompt, LLM can generate responses that align with that
framework. Examples include using a mental health psychology
framework [50], a hierarchical storytelling framework that orga-
nizes characters, plots, and themes for writing [38], a predefined
codebook for qualitative coding [66], and usability heuristics
such as Nielsen’s heuristics [13].

(4) Submode 1.4. User is asked for intent clarification by LLM. LLM
can refine its responses by clarifying user intent through itera-
tive questioning. For example, it can progressively adjust gener-
ated images to better match user intentions [31] or enhance the
accuracy of retrieved knowledge by actively asking clarifying
questions to ensure intent alignment [72].

(5) Submode 1.5. User/LLM designs multiple prompt variations or LLM
generates multiple output variations. The user either designs (or
requests the LLM to design) multiple variations of a prompt [4],
or the LLM autonomously generates multiple outputs, such as
alternative sentence rewrites [23] or qualitative coding sugges-
tions [18].

(6) Submode 1.6. User gives LLM explicit task context and specific
steps. Context refers to external information beyond the general
task description, provided within the prompt to guide the LLM
in generating more relevant responses 7. Prompts that incor-
porate context are often referred to as the in-context learning
technique [10]. This includes specific few-shot examples, struc-
tured information about the desired output format, and other
explicit instructions. For instance, in AI-assisted code writing
tasks [20], specific code contexts are provided to elicit more
relevant suggestions from the LLM.

(7) Submode 1.7. User gives LLM implicit context and general require-
ments. In contrast to Submode 1.6, this mode requires the user
to provide only minimal context and general requirements as
input, relying on the LLM to perform some level of deduction
to understand the user’s intent. For example, in an in-vehicle

7https://www.promptingguide.ai/

https://www.promptingguide.ai/


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

conversation scenario, an LLM assistant might infer user in-
tent and take actions such as playing music or adjusting the air
conditioning [11].

(8) Submode 1.8 User iteratively and incrementally refine the output
User uses the modified prompt and output from last step to
prompt LLM for further output. For example, users can incre-
mentally refine generated images using previous outputs and
modified output [35].

5.2 Mode 2. Interaction with Graphical User
Interface

This mode differs from standard prompting because it has additional
element, GUI, involved, which increases the complexity of system
architecture. This mode differs from standard prompting due to the
additional involvement of a GUI, which increases the complexity
of the system architecture.

Elements involved: Human, LLM, Graphical User Interface
Aspects that can vary: UI design in the planning stage to sup-

port prompt formulation and UI design in the output stage to facili-
tate evaluation and revision of responses.

Variations: The key variations occur in two stages: planning
the input and evaluating and revising the output.
(1) Submode 2.1. User uses UI for prompting technique design support.

UI design can support prompting technique design in several
ways, including: 1○ Supporting reasoning: UI element can en-
able direct manipulation of intermediate steps in the reasoning
chain, allowing human edits before transitioning to the next
step. For instance, the UI can provide intermediate suggestions
for each bullet point within a prompt chain [63, 64], organize
steps through a chain of visual blocks [1], facilitate writing by
guiding users from a primary idea to detailed examples or evi-
dence [54, 74], and present solutions with decomposed steps that
allow users to repair bugs in intermediate steps [59]. 2○ Support-
ing multiple prompts/outputs generation: UI design can facilitate
the creation of multiple prompts or outputs (Submode 1.5). For
example, DesignAID [4] enables an LLM to generate multiple
prompts based on a single input, allowing for diverse image
generations in later stages. Similarly, UI elements can support
iterative writing and experimentation, such as enabling users
to explore different story-writing variations using a "tree struc-
ture of keywords" [29]. 3○ Supporting knowledge frameworks:
UI can also integrate knowledge frameworks, such as usability
heuristics, to facilitate the evaluation of users’ design [13].

(2) Submode 2.2. User uses structured UI for prompt design. A UI can
be designed with structured fields to enable users to customize
different parts of a prompt, such as prefixes, settings, and few-
shot examples [24, 38]. For example, an LLM system can support
personal journaling by allowing users to input keywords and
adjust preferences via a slider [28]. Similarly, a system for multi-
modal generative AI can enable users to customize prompts
through various parameter settings, such as color selection and
element selection [43].

(3) Submode 2.3. User uses UI for various output format control. To
enhance user evaluation of LLM outputs, this mode can pro-
vide options for customizing visualized code results, such as
selecting the preferred size, choosing colors, or adjusting button
layouts [25, 26].

(4) Submode 2.4. User uses UI for collaborative prompt design. UI de-
sign can facilitate collaborative prompt design, allowing multiple
users to design prompts together rather than individually [15].

(5) Submode 2.5. User uses UI for output evaluation, iteration and re-
finement. UI design can enable users to evaluate LLM responses
and refine or even recraft prompts, supporting the iterative im-
provement of intermediate or final outputs [3, 33]. For example,
in LLM-assisted cooking conversations [70], UI design helps
users refine interactions by identifying and labeling errors, as
well as regenerating interactions. Additionally, UI design can
facilitate the presentation of different evaluation aspects [22].

5.3 Mode 3. Interaction with User Group
This mode differs from standard prompting by incorporating an
additional element—User Group—which increases the complexity
of both system architecture and interaction.

Elements involved: Human Group, LLM
Aspects that can vary: A group of humans can collaborate

with LLM assistance during different stages of the task, such as
planning (e.g., facilitating discussions), evaluating and revising (e.g.,
providing feedback on LLM-generated content).

Variations:
(1) Submode 3.1. LLM facilitates human group communication. LLM

is designed to facilitate team interactions, such as meeting com-
munication [5, 14, 40], decision-making [75], and collaborative
story writing [48].

(2) Submode 3.2. LLM acts as an equal team member within a human-
LLM team. Instead of directly giving instructions to an LLM,
humans and the LLM collaborate as equal partners through nat-
ural language communication, with both capable of requesting
tasks from each other to achieve the overall goal [61]. In a co-
writing task, the LLM and the human can contribute equally to
the final output, while the LLM also provide assistance to the
user [44].

5.4 Mode 4. Interaction with Multi-LLM
Collaboration

This mode differs from standard prompting by incorporating an
additional element—a Multi-LLM team—which increases the com-
plexity of both system architecture and interaction.

Elements involved: Human, LLM Group
Aspects that can vary: Humans can collaborate with multiple

LLMs instead of a single LLM to perform a task. This approach is
often used when a complex task requires multiple LLMs working
together, facilitating both the planning and generating phases.

Variations:
(1) Submode 4.1. User perform tasks by prompting an LLM team. By

assigning each LLM a distinct persona, multiple LLMs can collab-
orate to handle complex tasks that a single LLMmay not perform
well [6, 58]. For example, in novel writing, different LLMs can
take on roles such as planner, researcher, and writer [6]. In photo
editing, multiple LLMs can function as a program manager and
a technical expert, each contributing specialized expertise [58].
This approach can even extend to forming a social community
of LLM agents [41].

(2) Submode 4.2. User performs task with teacher and student model
team. This mode leverages the advantages of both small LLMs
(student models) and large LLMs (teacher models) by combin-
ing the low-cost, lightweight, and locally deployable nature of



A Taxonomy for Human-LLM Interaction Modes Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

student models with the high language understanding and gen-
eration capabilities of teacher models. The teacher LLM provides
prompt guidance, while the student LLM handles execution. This
approach reduces the burden on the remote teacher model and
helps maintain data privacy [68, 71].

5.5 Mode 5. Interaction with Multi-modal
Components

This mode differs from standard prompting by incorporating an
additional element—a multi-modal component—that converts input
and output into formats understandable by humans or LLMs, such as
processing audio, images, or videos. This increases the complexity
of interaction.

Elements involved: Human, LLM, Multi-modal Component
Aspects that can vary: Designing components for LLM input

(prompts) and components for converting LLM output into different
modalities. This usually happens in planning and evaluating phases.

Variations:
(1) Submode 5.1. LLM performs task with multimodal components

for input, output, or both. This approach may involve adding a
multi-modal encoder to the LLM, enabling it to process and un-
derstand visual information [45]. Alternatively, image and audio
data can be converted into structured text for the LLM to per-
form reasoning and predictions [32]. Other techniques include
extracting text from images for content analysis with LLM or
passing LLM-generated outputs to other generative AI models
for image generation [8]. Additionally, an LLM can generate
multiple variations of user prompts, which are then used by a
stable diffusion model to create diverse images for users [4].

5.6 Mode 6. Interaction with Knowledge Base
This mode differs from standard prompting by incorporating an
additional element—a knowledge base—which enables the LLM to
respond to human queries using retrieved information from the
knowledge base.

Elements involved: Human, LLM, Knowledge Base
Aspects that can vary: Designing different domain-specific

knowledge retrieval techniques, such as retrieval-augmented gen-
eration (RAG)8, enables the LLM to generate more expert-level
responses by assessing the semantic similarity between the user’s
prompt and an external knowledge base. This variation primarily
occurs during the planning phase.

Variations:
(1) Submode 6.1. User prompts LLM to retrieve knowledge from knowl-

edge base. A typical example of default knowledge retrieval is
RAG, which can be enhanced with additional prompting tech-
niques, such as actively asking users about their intent in knowl-
edge retrieval to ensure more aligned question answering [72].
Additionally, during the fine-tuning process of an LLM, knowl-
edge retrieval can be used to construct high-quality training
dataset, improving the performance of the trained model [67].

(2) Submode 6.2. User uses knowledge graph to assist LLM knowledge
base retrieve retrieval. Using a knowledge graph to assist LLM
responses, where each node represents a concept or entity from
the knowledge base [12, 55, 62], reframes knowledge retrieval
as a concept-location problem within the knowledge base.

8https://learn.microsoft.com/en-us/dotnet/ai/conceptual/rag

(3) Submode 6.3. User uses domain model to assist LLM. Sometimes,
the knowledge base is not structured in a traditional format. In
such cases, a domain model can be trained on the knowledge
base, to provide few-shot examples for LLMprompts through text
classification [65]. Additionally, generated knowledge from the
LLM can be compared with extracted knowledge from language
models to perform knowledge verification [42].

5.7 Mode 7. Interaction with Tool Usage
This mode differs from standard prompting by incorporating an
additional element—external tools (e.g., web searching)—which
enable the LLM to generate more accurate and up-to-date responses.

Elements involved: Human, LLM, External Tool
Aspects that can vary: Designing different toolsets that involv-

ing various functions like web browsing or code execution during
the generating process.

Variations:
(1) Submode 7.1. LLM enhances its output by external tools during

generating. LLM responses are typically generated based on pre-
existing knowledge, primarily learned frompredefined datasets—which
may become outdated over time. During the response genera-
tion process, whenever the latest information is required (e.g.,
weather updates or recent tutorials), the LLM can utilize web
search results to generate more up-to-date responses [34].

6 TAXONOMY DESIGN SPACE THROUGH
COMBINATION OF MAIN MODES

As mentioned in Section 5, our seven interaction modes are atomic,
meaning they can be combined to form more complex interaction
patterns. As shown in Figure 3, 54.7% of the annotated papers
feature multiple interaction modes rather than a single mode per
system, highlighting the increasing complexity of LLM-powered
system design.

As shown in Figure 4, most combinations occur between sub-
modes under Mode 1 and Mode 2. In particular, Submode 2.2—Struc-
tured UI for prompt design—can be integrated with various prompt-
ing techniques. For example, a structured UI can help users design
prompts by specifying the primary task goal, prefixes, settings,
and few-shot examples [24]. It can also be combined with multi-
modal components, enabling users to manipulate images directly
or integrate other modes to support design generation [43].

10.9%

1.5%0.4%

45.3%

41.9%

Figure 3: Frequency of combinations

Interestingly, UI is a highly compatible element and can be com-
bined with almost all other elements. For example, users can con-
figure the UI to design multiple prompt techniques supporting
multi-LLM teams, integrate multi-modal components, facilitate
tool usage, or enable knowledge retrieval.

https://learn.microsoft.com/en-us/dotnet/ai/conceptual/rag


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

P
ap

er
 N

um
be

r C
ou

nt
s

0

2

4

6

8

Submode 1.1. User/LLM uses reasoning in prompting
Submode 1.2. User asks LLM to act as a persona

Submode 1.3. User incorporates knowledge framework in prompting
Submode 1.5. User/LLM designs multiple prompt variations or LLM

generates multiple output variations
Submode 1.6. User gives LLM explicit task context and specific steps

Submode 2.1. User uses UI for prompting technique design support
Submode 2.2. User uses structured UI for prompt design

Submode 2.3. User uses UI for various output format control

Submode 2.5. User uses UI for output evaluation, iteration and refinement
Submode 4.1. User perform tasks by prompting an LLM team

Submode 4.2. User performs task with teacher and student model team
Submode 5.1. LLM performs task with multimodal components for 

input, output, or both.
Submode 6.1. User prompts LLM to retrieve knowledge from knowledge base

Figure 4: Frequency of combinations.

Moreover, since LLM-powered systems are still evolving, we
envision that many more novel mode combinations will emerge,
further increasing the complexity of system architecture design
and enriching human-LLM interactions.

How many design possibilities exist in the entire design
space? If we consider all possible mode combinations, the calcu-
lation of the total number of submode combinations can be re-
garded as a combinatorial enumeration problem of subsets of size
22 (22 submodes). The total number of subsets of a set with 22
elements is given by

∑22
𝑟=0

(22
𝑟

)
= 222 . Excluding the empty set

(where 𝑟 = 0,
(22
0
)
= 1) and the single-element subsets (where 𝑟 = 1,(22

1
)
= 22), the total number of possible mode combinations is:

222 − 1− 22 = 4,194,304− 23 = 4,194,281. Thus, there are 4,194,281
possible mode combinations. This number is significantly larger
than what is currently observed (assuming no mutually exclusive
modes). Consequently, this vast design space could inspire much
greater diversity in LLM-powered system design.

7 APPLICATION: TAXONOMY AS A
REFERENCE FOR DIFFERENT USAGE
PURPOSES

While the 22 submodes were categorized into seven distinct modes,
many share similar purposes. We identified four broader usage sce-
narios to clarify the relationships between different modes. When
LLM-powered system developers, designers, product managers,
and other potential users of this taxonomy seek suitable submodes,
they may start with a basic one and explore alternatives that serve
similar purposes. The usage scenarios for interaction modes are
illustrated in Figure 5.

7.1 For Personalization
As shown in Usage 1 branch in Figure 5, this usage involves aug-
menting LLMs in various ways to enhance personalization and
task relevance, ensuring they better align with users’ goals. This
includes incorporating specific domain expertise or tailoring re-
sponses based on user preferences.
7.1.1 For personalizing user preferences. This usage allows
users to shape an LLM’s behavior and responses through human-
like interaction with specific personas, such as preferred commu-
nication styles, to better align with their preferences. This may
require users to take the initiative in understanding the attributes
of the desired persona and articulating them in the prompt.

7.1.2 For personalizing LLM expertise. This usage aims to aug-
ment LLMs with external expertise to generate more informed and
expert-aligned outputs. This can be achieved through various meth-
ods, such as incorporating knowledge frameworks into prompts,
retrieving information from external knowledge bases, utilizing
knowledge graph-supported retrieval, or leveraging domain models
to provide professional few-shot examples and contextual guidance.
However, this approach may require a high level of expertise, as
users must understand retrieval mechanisms to construct effective
prompts.

7.2 For Iteration
As shown in the Usage 2 branch of Figure 5, iteration usage focuses
on improving prompt alignment and refining LLM outputs.
7.2.1 For iterating to align input intent. This usage ensures
that the LLM aligns with the user’s intended task goals, making In-
tent Alignment particularly suitable for users with clear objectives
and structured workflows. Alignment can be achieved in several
ways: the LLM may request intent clarification, users may provide
task context or explicit step-by-step instructions, or users may offer
only implicit requirements, relying on the LLM to iteratively refine
its responses through trial and error to match their preferences or
make decisions.
7.2.2 For iterating to improve output. To refine results, these
modes enable the generation of multiple prompt/output variations,
allowing users to compare them synchronously. Alternatively, users
can iteratively and incrementally refine outputs, with the system
providing mechanisms to decompose tasks upfront and continu-
ously enhance results. This process can also be facilitated through
the UI, with improvements typically applied to the LLM’s output.
Results improvement is particularly beneficial for tasks requiring
ongoing adjustments.
7.3 For Collaboration
As shown in Usage 3 in Figure 5, this usage enhances the LLM’s capa-
bility to facilitate or participate in collaborative workflows, whether
among humans, between humans and LLMs, or among LLMs them-
selves. Collaboration can occur at various stages of a task, such as
planning, generating, revising, and evaluating. Developers seeking
to explore different roles an LLM can assume—whether as an active
participant or an objective facilitator—can consider factors such
as which planning phase it engages in, whether humans or the
LLM take initiative, or how mixed-initiative interactions unfold at
different stages.

These interaction modes share the broad goal of enabling effec-
tive communication and cooperative output generation, yet differ
significantly in their focus on the roles and contributions of humans
and LLMs. We identified three main types of collaboration:

1) One LLM, a group of users. For collaborative prompt de-
sign or group communication, LLMs can also serve as objective
facilitators, bridging gaps between individuals by summarizing
discussions, highlighting key points, and resolving ambiguities to
help teams reach a common consensus. This is particularly useful
in scenarios such as cross-functional team meetings or decision-
making processes, where clarity and agreement are crucial. In such
cases, the LLM may need to take a more proactive yet objective
facilitation role, actively shaping the team’s direction and guiding
the problem-solving process.



A Taxonomy for Human-LLM Interaction Modes Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Human-LLM 
Interaction Modes 

Application Scenarios

Usage 3: Collaboration

U3.1. Human-Human 
Team with LLM

Mode 2. Graphical User 
Interface

Submode 2.4 User uses UI 
for collaborative prompt 
design

Mode 3. User Group
Submode 3.1 LLM 
facilitates human group 
communication

U3.2. Human and LLM-
LLM team collaboration Mode 4. LLM Team

Submode 4.1 User 
prompts an LLM team to 
perform task

Submode 4.2 User 
performs task with teacher 
and student model team

U3.3. Human and LLM 
collaboration Mode 3. User Group

Submode 3.2 LLM acts as 
an equal team member 
within a human-LLM team

Usage 4: Visualization & 
Multi-modality

U4.1. Output Affordance

Mode 2. Graphical User 
Interface

Submode 2.3 User uses UI 
for various output format 
control

Mode 5. Multi-modal 
Components

Submode 5.1 Multi-modal 
components for input and 
output

 U4.2. Input Planning and 
Organization

Mode 2. Graphical User 
Interface

Submode 2.1 User uses UI 
for prompting technique 
design support

Submode 2.2 User uses 
structured UI for prompt 
design

Mode 5. Multi-modal 
Components

Submode 5.1 Multi-modal 
components for input and 
output

Usage 2: Iteration of 
Interaction

U2.1. Iterate for Result 
Improvement

Mode 1. Standard 
Prompting

Submode 1.5 User/LLM 
designs multiple prompt 
variations or LLM 
generates multiple output 
variations

Submode 1.8 User 
iteratively and 
incrementally refine the 
output

Mode 2. Graphical User 
Interface

Submode 2.5 User uses UI 
for output evaluation, 
iteration, and refinement

U2.2. Iterate for Intent 
Alignment

Mode 1. Standard 
Prompting

Submode 1.5 User is 
asked for intent clarification 
by LLM

Submode 1.6 User gives 
LLM explicit task context 
and specific steps

Submode 1.7 User gives 
LLM implicit context/intent 
and general requirements

Usage 1: Personalization

U1.1. Personalize user 
preferences

Mode 1. Standard 
Prompting

Submode 1.2 LLM to act 
as a persona

U1.2. Personalize 
expertise

Mode 1. Standard 
Prompting

Submode 1.3 Knowledge 
framework in prompting

Mode 6. Knowledge 
Retrieval

Submode 6.1 User uses 
prompting techniques for 
retrieval

Submode 6.2 User uses 
knowledge graph for 
retrieval

Mode 4. LLM Team
Submode 6.3 User uses 
domain model to provide 
assistance to LLM

Figure 5: Human-LLM Interaction Modes

2) A group of LLMs, one user. This closely aligns with AI
agent concepts, where multiple LLMs take on different roles and
collaborate to accomplish tasks.

3) Different Human and LLM collaboration relationship.
This has been a highly popular research area in recent years. This
usage includes one particularly interesting submode 3.2, where
humans and LLMs collaborate as equal team members. This shifts
repositions LLMs from being mere tools, as seen in most submodes
of Mode 1, to true collaborators in submode 3.2. Exploring different
levels of LLM proactivity introduces intriguing variations in system
design. For example, a proactive LLM could seek intent clarification
from humans and actively contribute as an equal team member in
problem-solving tasks (Submode 1.5).

7.4 For Visualization & Multi-modality
As shown in Usage 4 in Figure 5, both input and output can be
designed with different variations to enhance visualization and
accommodate multiple modalities, such as images and audio.

7.4.1 For improving input planning and organization. This
usage focuses on improving input planning and organization through
prompt design on UI and multi-modal components for input format
conversion. The UI is designed to streamline the organization pro-
cess, making it more intuitive for users. Meanwhile, multi-modal
components enable the integration of diverse input formats, such as
text and images, to establish a richer context for the LLM, enhancing
its ability to generate more relevant and informed responses.

7.4.2 For improving output affordance. As shown in Usage
3.1 in Figure 5, this usage can also be achieved through UI and
multi-modal components, but with a focus on output presentation
rather than input planning. Here, the UI is primarily designed for
displaying results, such as charts, graphs, or infographics, tailored
to user needs. This visualization enhances clarity, reduces cognitive
load, and improves accessibility for evaluation. Meanwhile, multi-
modal components for output allow LLM-generated responses to be
converted into images, audio, or a combination of formats, offering
a richer presentation than the original text-based output.

8 CASE STUDY: ANALYSING CURRENT LLM
SYSTEMS

We selected three widely used LLM applications—ChatGPT, Claude,
and Cursor—for a case study, demonstrating the specific applica-
tion of our taxonomy of interaction modes. ChatGPT and Claude
represent the two most popular general-purpose conversational
AIs, while Cursor exemplifies a commercially adopted LLM system
widely used by developers. Table 2 presents the analysis results,
including interaction modes associated with each system and their
corresponding system features.

Our analysis reveals that even seemingly simple systems like
ChatGPT and Claude rely on multiple interaction modes, each em-
ploying different variations that lead to distinct feature designs.
Ultimately, these feature designs shape diverse interaction experi-
ences, supporting visualization, personalization, and iteration.
9 DISCUSSION
Concept Connections with Software Design Patterns.When
developing the taxonomy, we observed that, in conceptual level,
some of our interaction modes have similarities to existing design
patterns proposed by the Gang of Four [16, 47]—particularly at
a highly abstract conceptual level. We have identified 8 potential
sub-interaction modes that can be linked to these original 5 design
patterns. We illustrate these connections in Figure 6.

For example, Submode 4.1, the multi-LLM team, can be compared
to the composite design pattern—a structural design pattern that
“lets you compose objects into tree structures and then work with
these structures as if they were individual objects” [16]. Similarly, a
multi-LLM team consists of multiple LLMs assigned to different sub-
tasks within a hierarchical structure, collectively working toward a
full task. This concept closely aligns with LLM agents [56]. Likewise,
the mode where an LLM facilitates human group communication
resembles the Mediator pattern, in which a mediator component
manages interactions between different components [16, 49]. The
key distinction is that these interaction modes are implemented in
LLM-powered systems, whereas traditional design patterns were
originally derived from conventional software architectures.



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

Table 2: Comparison of Interaction Modes and Mode-Specific
Features for ChatGPT, Claude, and Cursor. We include only
clearly identifiable and unambiguousmodes, excluding those
with varying interpretations. Additionally, a single feature
may encompass multiple interaction modes; for example,
using DALL·E to generate images involves both Mode 5 and
Mode 7.
System Involved Interaction Modes Mode-Specific Features

C
ha

tG
PT

• Mode 1: Standard Prompt-
ing
– Support most prompting
techniques

• Mode 2: GUI
– Submode 2.1: Basic GUI
– Submode 2.2: Structured
UI

– Submode 2.3: Output For-
mat Control

• Mode 5: Multimodal Com-
ponents
– Submode 5.1: Multimodal
I/O

• Mode 6: Knowledge Base
– Submode 6.1: Prompts to
perform RAG

• Mode 7: Tool Usage
– Submode 7.1: External
Tools

• Mode 1 (Prompting):
– Support most prompting tech-
niques like reasoning (with o1
model), etc.

• Mode 2 (GUI):
– Basic structured UI fields for
prompt composing (My GPTs)

– Output formatting (e.g., mark-
down, code blocks, canvas)

• Mode 5 (Multimodal):
– Plugin support for images or audio
(via DALL·E or Whisper plugins)

• Mode 6 (Knowledge Base):
– Uploaded files can be seen as ex-
ternal Knowledge Base

• Mode 7 (Tools):
– Web Searching
– Code Interpreter and Canvas

C
la
ud

e

• Mode 1: Standard Prompt-
ing
– Support most prompting
techniques

• Mode 2: GUI
– Submode 2.1: Basic GUI
– Submode 2.2: Structured
UI

– Submode 2.3: Output For-
mat Control

– Submode 2.5: UI for out-
put evaluation, iteration,
and refinement

• Mode 1 (Prompting):
– Support most prompting tech-
niques like reasoning, etc.

• Mode 2 (GUI):
– Basic text interface
– Allowing users to choose the re-
sponse style of model

– Rendering the code on Canvas,
and allowing interactive sharing

– Evaluating the results and asking
for explanations

C
ur

so
r

• Mode 1: Standard Prompt-
ing
– Support most prompting
techniques

• Mode 2: GUI
– Submode 2.1: Basic GUI
– Submode 2.3: Output For-
mat Control

– Submode 2.5: UI for out-
put evaluation, iteration,
and refinement

• Mode 5: Multimodal Com-
ponents
– Submode 5.1: Multimodal
I/O

• Mode 6: Knowledge Base
– Submode 6.1: Prompts to
perform RAG

• Mode 7: Tool Usage
– Submode 7.1: External
Tools

• Mode 1 (Prompting):
– Best support for explicit context
(Submode 1.6), especially when
users can choose which pieces of
code to include in their queries.

• Mode 2 (GUI):
– Basic code viewing and editing in-
terface

– Configurable UI to present intelli-
gent suggestions and bulk modifi-
cations

– Iterative code generation and
refactoring

• Mode 5 (Multimodal):
– Supports images input

• Mode 6 (Knowledge Base):
– Comprehends the entire codebase
and the current coding context as
a implicit Knowledge Base

• Mode 7 (Tools):
– Supports integration of existing
extensions from VS Code

So
ftw

ar
e 

D
es

ig
n 

Pa
tte

rn
s

Creational 
Patterns

Abstract Factory

Builder

Factory Method

Prototype

Singleton

Structural 
Patterns

Adapter

Bridge

Composite
Multi-LLM team (Submode 4.1)

teacher and student model team 
(Submode 4.2)

Decorator

Facade LLM for knowledge base retrieval 
(Submode 6.1)

Flyweight

Proxy

Behavioral 
Patterns

Chain of 
Responsibility

Iteratively and incrementally 
refine the output (Submode 1.8)

UI for output evaluation, iteration, 
and refinement (Submode 2.5)

Command

Interpreter

Iterator

Mediator LLM facilitates human group 
communication (Submode 3.1)

Memento

Observer

LLM facilitates human group 
communication (Submode 3.1)

LLM acts as an equal team 
member within a human-LLM 
team (Submode 3.2)

State

Strategy

Template Method

Visitor

Figure 6: The interaction modes idea aligns with software de-
sign patterns, with several demonstrating particularly strong
connections.

The development of LLM-powered applications is expanding
rapidly, mirroring past technological shifts—such as the software
design and development boom of the 1990s. During that period, 1.5
million software applications emerged in the U.S. within a decade,
spanning domains such as science, commerce, information technol-
ogy, and web applications [27]. Jones predicted that the “possible
future for software engineering” may involve deriving design pat-
terns from successful, already operational applications.

Similarly, as LLM-powered applications gain popularity, under-
standing the shift from traditional software design to human-LLM
team-based systems presents a valuable potential opportunity to
extend classical design pattern theories.
Evaluation factors to evaluate different combination ofmodes.
In Section 6, we highlighted that most LLM systems are composed
of different atomic interaction modes, with over four million pos-
sible combinations based on the currently identified modes. As
more atomic interaction modes are discovered, this space could ex-
pand significantly. However, the objective is not merely to increase
the number of combinations but to identify reusable patterns in
LLM-powered system development.

Thus, an evaluation framework for assessing both individual
modes and their combinations is crucial. Such a framework can help



A Taxonomy for Human-LLM Interaction Modes Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

bridge the gap between theoretical interaction modes and their real-
world implementation. For example, different modes and submodes
could be compared based on factors such as resource allocation
(e.g., human effort, system complexity, and time constraints) in
system development. Some combinations may be cost-effective
and require minimal human effort, while others could be resource-
intensive without offering additional value. This evaluation would
help developers make more informed design decisions.
10 LIMITATIONS AND FUTUREWORK
The taxonomy isn’t static, it could be envolved through the progress
of the LLM and relevant technology, which we intend to refine
continuously. We foresee its expansion to encompass additional
LLM interaction modes likely to emerge in the future. Moreover,
it is important to note that many current classifications in our
taxonomy are not absolute, given the slight overlap between some
categories.

Looking forward, we believe that it will be especially valuable
to extend the taxonomy to explicitly include different kinds of
tasks and different design spaces. For instance, we believe that the
capabilities and interaction modes needed to creating tasks will
likely be systematically different from the capabilities and modes
needed to deciding tasks. To do that, it could be good to perform the
literature review to additional venues or build extra dimensions.
11 CONCLUSION
While conversational LLMs have become the “default” mode of
human-LLM interaction, many other interaction methods exist.
From a software engineering perspective, we conducted a system-
atic literature review across major AI and HCI venues and ana-
lyzed the system architectures of human-LLM teams in 267 pa-
pers. Through this analysis, we identified the fundamental building
blocks: elements and their interfaces, behaviors, standard human-
LLM interaction processes, and seven typical interaction modes. We
discussed potential applications and provided a case study demon-
strating the taxonomy’s use. In the long run, we envision that this
taxonomy could make a theoretical contribution to the SE for AI
field.
12 DATA AVAILABILITY
The list of papers and their corresponding labels from our literature
review are available on our website https://sites.google.com/view/
taxonomymodes.

REFERENCES
[1] Ian Arawjo, Priyan Vaithilingam, Martin Wattenberg, and Elena Glassman. 2023.

ChainForge: An Open-Source Visual Programming Environment for Prompt
Engineering. In Adjunct Proc. UIST ’23. 1–3. https://doi.org/10.1145/3586182.
3616660

[2] Len Bass, Paul Clements, and Rick Kazman. 2013. Software Architecture in Practice.
Pearson Education, Harlow.

[3] Stephen Brade, Bryan Wang, Mauricio Sousa, Sageev Oore, and Tovi Gross-
man. 2023. Promptify: Text-to-Image Generation through Interactive Prompt
Exploration with Large Language Models. In Proc. UIST ’23. 1–14. https:
//doi.org/10.1145/3586183.3606725

[4] Alice Cai, Steven R Rick, Jennifer L Heyman, Yanxia Zhang, Alexandre Filipowicz,
Matthew Hong, Matt Klenk, and Thomas Malone. 2023. DesignAID: Using Gen-
erative AI and Semantic Diversity for Design Inspiration. In Proc. ACM Collective
Intelligence Conf. (CI ’23). 1–11. https://doi.org/10.1145/3582269.3615596

[5] Zhenyao Cai, Seehee Park, Nia Nixon, and Shayan Doroudi. 2024. Advancing
Knowledge Together: Integrating Large Language Model-Based Conversational
AI in Small Group Collaborative Learning. In Ext. Abstracts CHI Conf. Human
Factors Comput. Syst. (CHI EA ’24). Article 37, 9 pages. https://doi.org/10.1145/
3613905.3650868

[6] Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F. Karlsson,
Jie Fu, and Yemin Shi. 2024. AutoAgents: A Framework for Automatic Agent
Generation. arXiv:2309.17288 [cs.AI] https://arxiv.org/abs/2309.17288

[7] Chun-Wei Chiang, Zhuoran Lu, Zhuoyan Li, and Ming Yin. 2024. Enhancing
AI-Assisted Group Decision Making through LLM-Powered Devil’s Advocate. In
Proc. 29th Int. Conf. Intelligent User Interfaces (IUI ’24). 103–119. https://doi.org/
10.1145/3640543.3645199

[8] DaEun Choi, Sumin Hong, Jeongeon Park, John Joon Young Chung, and Juho
Kim. 2024. CreativeConnect: Supporting Reference Recombination for Graphic
Design Ideation with Generative AI. In Proc. CHI ’24. Article 1055, 25 pages.
https://doi.org/10.1145/3613904.3642794

[9] Paul Clements, David Garlan, Reed Little, Robert Nord, and Judith Stafford. 2003.
Documenting software architectures: views and beyond. In 25th International
Conference on Software Engineering, 2003. Proceedings. IEEE, 740–741.

[10] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming
Xia, Jingjing Xu, Zhiyong Wu, Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and
Zhifang Sui. 2024. A Survey on In-Context Learning. arXiv:2301.00234 [cs.CL]
https://arxiv.org/abs/2301.00234

[11] Huifang Du, Xuejing Feng, Jun Ma, Meng Wang, Shiyu Tao, Yijie Zhong, Yuan-
Fang Li, and Haofen Wang. 2024. Towards Proactive Interactions for In-Vehicle
Conversational Assistants Utilizing Large Language Models. In Proc. IJCAI-24.
7850–7858. https://doi.org/10.24963/ijcai.2024/869

[12] Weihong Du, Jia Liu, Zujie Wen, Dingnan Jin, Hongru Liang, and Wenqiang
Lei. 2024. CARE: A Clue-Guided Assistant for CSRs to Read User Manuals.
In Proc. 62nd Annu. Meet. Assoc. Comput. Linguistics (ACL ’24). 10795–10811.
https://doi.org/10.18653/v1/2024.acl-long.581

[13] Peitong Duan, Jeremy Warner, Yang Li, and Bjoern Hartmann. 2024. Generating
Automatic Feedback on UI Mockups with Large Language Models. In Proceedings
of the 2024 CHI Conference on Human Factors in Computing Systems (Honolulu,
HI, USA) (CHI ’24). Association for Computing Machinery, New York, NY, USA,
Article 6, 20 pages. https://doi.org/10.1145/3613904.3642782

[14] Wen Duan, Naomi Yamashita, Yoshinari Shirai, and Susan R Fussell. 2021. Bridg-
ing Fluency Disparity Between Native and Nonnative Speakers in Multilingual
Multiparty Collaboration Using a Clarification Agent. Proc. ACM Hum.-Comput.
Interact. 5, CSCW2 (2021), 1–31.

[15] Li Feng, Ryan Yen, Yuzhe You, Mingming Fan, Jian Zhao, and Zhicong Lu. 2024.
CoPrompt: Supporting Prompt Sharing and Referring in Collaborative Natural
Language Programming. In Proc. CHI ’24. Article 934, 21 pages. https://doi.org/
10.1145/3613904.3642212

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
patterns: elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., USA.

[17] Sundarakrishnan Ganesh and Robert Sahlqvist. 2024. Exploring Patterns in LLM
Integration-A study on architectural considerations and design patterns in LLM
dependent applications. (2024).

[18] Jie Gao, Yuchen Guo, Gionnieve Lim, Tianqin Zhang, Zheng Zhang, Toby Jia-Jun
Li, and Simon Tangi Perrault. 2024. CollabCoder: A Lower-barrier, Rigorous
Workflow for Inductive Collaborative Qualitative Analysis with Large Language
Models. arXiv:2304.07366 [cs.HC]

[19] David Garlan. 2000. Software architecture: a roadmap. In Proceedings of the
Conference on The Future of Software Engineering (Limerick, Ireland) (ICSE ’00).
Association for Computing Machinery, New York, NY, USA, 91–101. https:
//doi.org/10.1145/336512.336537

[20] Ken Gu, Madeleine Grunde-McLaughlin, Andrew McNutt, Jeffrey Heer, and Tim
Althoff. 2024. How Do Data Analysts Respond to AI Assistance? A Wizard-of-Oz
Study. In Proc. CHI ’24. Article 1015, 22 pages. https://doi.org/10.1145/3613904.
3641891

[21] Kunal Handa, Margarett Clapper, Jessica Boyle, Rose Wang, Diyi Yang, David
Yeager, and Dorottya Demszky. 2023. "Mistakes Help Us Grow": Facilitating and
Evaluating Growth Mindset Supportive Language in Classrooms. In Proc. EMNLP
2023. 8877–8897. https://doi.org/10.18653/v1/2023.emnlp-main.549

[22] Mina Huh, Yi-Hao Peng, and Amy Pavel. 2023. GenAssist: Making Image Gener-
ation Accessible. In Proc. UIST ’23. Article 38, 17 pages. https://doi.org/10.1145/
3586183.3606735

[23] Takumi Ito, Naomi Yamashita, Tatsuki Kuribayashi, Masatoshi Hidaka, Jun Suzuki,
Ge Gao, Jack Jamieson, and Kentaro Inui. 2023. Use of an AI-Powered Rewriting
Support Software in Context with Other Tools: A Study of Non-Native English
Speakers. In Proc. UIST ’23. Article 45, 13 pages. https://doi.org/10.1145/3586183.
3606810

[24] Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra Molina, Aaron Donsbach,
Michael Terry, and Carrie J Cai. 2022. PromptMaker: Prompt-Based Prototyping
with Large Language Models. In CHI Conf. Human Factors Comput. Syst. Extended
Abstracts. 1–8. https://doi.org/10.1145/3491101.3503564

[25] Ellen Jiang, Edwin Toh, Alejandra Molina, Aaron Donsbach, Carrie J Cai, and
Michael Terry. 2021. GenLine and GenForm: Two Tools for Interacting with
Generative Language Models in a Code Editor. In Adjunct Proc. 34th Annu. ACM
Symp. User Interface Softw. Technol. (UIST ’21). 145–147. https://doi.org/10.1145/
3474349.3480209

https://sites.google.com/view/taxonomymodes
https://sites.google.com/view/taxonomymodes
https://doi.org/10.1145/3586182.3616660
https://doi.org/10.1145/3586182.3616660
https://doi.org/10.1145/3586183.3606725
https://doi.org/10.1145/3586183.3606725
https://doi.org/10.1145/3582269.3615596
https://doi.org/10.1145/3613905.3650868
https://doi.org/10.1145/3613905.3650868
https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2309.17288
https://doi.org/10.1145/3640543.3645199
https://doi.org/10.1145/3640543.3645199
https://doi.org/10.1145/3613904.3642794
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2301.00234
https://doi.org/10.24963/ijcai.2024/869
https://doi.org/10.18653/v1/2024.acl-long.581
https://doi.org/10.1145/3613904.3642782
https://doi.org/10.1145/3613904.3642212
https://doi.org/10.1145/3613904.3642212
https://arxiv.org/abs/2304.07366
https://doi.org/10.1145/336512.336537
https://doi.org/10.1145/336512.336537
https://doi.org/10.1145/3613904.3641891
https://doi.org/10.1145/3613904.3641891
https://doi.org/10.18653/v1/2023.emnlp-main.549
https://doi.org/10.1145/3586183.3606735
https://doi.org/10.1145/3586183.3606735
https://doi.org/10.1145/3586183.3606810
https://doi.org/10.1145/3586183.3606810
https://doi.org/10.1145/3491101.3503564
https://doi.org/10.1145/3474349.3480209
https://doi.org/10.1145/3474349.3480209


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

[26] Ellen Jiang, Edwin Toh, Alejandra Molina, Kristen Olson, Claire Kayacik, Aaron
Donsbach, Carrie J Cai, and Michael Terry. 2022. Discovering the Syntax and
Strategies of Natural Language Programming with Generative Language Models.
In Proc. CHI ’22. 1–19. https://doi.org/10.1145/3491102.3501870

[27] Capers Jones. 2013. The technical and social history of software engineering.
Addison-Wesley.

[28] Taewan Kim, Donghoon Shin, Young-Ho Kim, and Hwajung Hong. 2024. Di-
aryMate: Understanding User Perceptions and Experience in Human-AI Col-
laboration for Personal Journaling. In Proc. CHI ’24. Article 1046, 15 pages.
https://doi.org/10.1145/3613904.3642693

[29] Tae Soo Kim, Yoonjoo Lee, Minsuk Chang, and Juho Kim. 2023. Cells, Generators,
and Lenses: Design Framework for Object-Oriented Interaction with Large Lan-
guage Models. In Proc. UIST ’23. 1–18. https://doi.org/10.1145/3586183.3606833

[30] Harsh Kumar, Yiyi Wang, Jiakai Shi, Ilya Musabirov, Norman A. S. Farb, and
Joseph Jay Williams. 2023. Exploring the Use of Large Language Models for
Improving the Awareness of Mindfulness. In Ext. Abstracts CHI ’23. 1–7. https:
//doi.org/10.1145/3544549.3585614

[31] Cassandra Lee and Jessica R Mindel. 2024. Closer and Closer Worlds: Using
LLMs to Surface Personal Stories in World-Building Conversation Games. In
Companion Pub. ACM Designing Interactive Systems Conf. (DIS ’24 Companion).
289–293. https://doi.org/10.1145/3656156.3665430

[32] Jiahao Nick Li, Yan Xu, Tovi Grossman, Stephanie Santosa, and Michelle Li. 2024.
OmniActions: Predicting Digital Actions in Response to Real-World Multimodal
Sensory Inputs with LLMs. In Proc. CHI ’24. Article 8, 22 pages. https://doi.org/
10.1145/3613904.3642068

[33] Michael Xieyang Liu, Advait Sarkar, Carina Negreanu, Benjamin Zorn, Jack
Williams, Neil Toronto, and Andrew D. Gordon. 2023. "What It Wants Me To
Say": Bridging the Abstraction Gap Between End-User Programmers and Code-
Generating Large Language Models. In Proc. CHI ’23. 1–31. https://doi.org/10.
1145/3544548.3580817

[34] Xingyu ’Bruce’ Liu, Vladimir Kirilyuk, Xiuxiu Yuan, Peggy Chi, Alex Olwal,
Xiang ’Anthony’ Chen, and Ruofei Du. 2023. Experiencing Visual Captions: Aug-
mented Communication with Real-Time Visuals Using Large Language Models.
In Adjunct Proc. UIST ’23. Article 85, 4 pages. https://doi.org/10.1145/3586182.
3615978

[35] Atefeh Mahdavi Goloujeh, Anne Sullivan, and Brian Magerko. 2024. Is It AI or
Is It Me? Understanding Users’ Prompt Journey with Text-to-Image Generative
AI Tools. In Proc. CHI ’24. Article 183, 13 pages. https://doi.org/10.1145/3613904.
3642861

[36] Amama Mahmood, Junxiang Wang, Bingsheng Yao, Dakuo Wang, and Chien-
Ming Huang. 2025. User Interaction Patterns and Breakdowns in Conversing with
LLM-Powered Voice Assistants. Int. J. Hum.-Comput. Stud. 195 (2025), 103406.
https://doi.org/10.1016/j.ijhcs.2024.103406

[37] Thomas W Malone, Kevin Crowston, and George Arthur Herman. 2003. Orga-
nizing business knowledge: the MIT process handbook. MIT press.

[38] Piotr Mirowski, Kory W. Mathewson, Jaylen Pittman, and Richard Evans. 2023.
Co-Writing Screenplays and Theatre Scripts with Language Models: Evaluation
by Industry Professionals. In Proc. CHI ’23. 1–34. https://doi.org/10.1145/3544548.
3581225

[39] David Moher, Alessandro Liberati, Jennifer Tetzlaff, Douglas G Altman, and t
PRISMA Group*. 2009. Preferred reporting items for systematic reviews and
meta-analyses: the PRISMA statement. Annals of internal medicine 151, 4 (2009),
264–269.

[40] Gun Woo Park, Payod Panda, Lev Tankelevitch, and Sean Rintel. 2024. The
CoExplorer Technology Probe: A Generative AI-Powered Adaptive Interface to
Support Intentionality in Planning and Running Video Meetings. In Proceedings
of the 2024 ACM Designing Interactive Systems Conference. 1638–1657.

[41] Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy
Liang, and Michael S. Bernstein. 2023. Generative Agents: Interactive Simulacra
of Human Behavior. In Proc. UIST ’23. Article 2, 22 pages. https://doi.org/10.1145/
3586183.3606763

[42] Pat Pataranutaporn, Valdemar Danry, Lancelot Blanchard, Lavanay Thakral,
Naoki Ohsugi, Pattie Maes, and Misha Sra. 2023. Living Memories: AI-Generated
Characters as Digital Mementos. In Proc. IUI ’23. 889–901. https://doi.org/10.
1145/3581641.3584065

[43] Xiaohan Peng, Janin Koch, and Wendy E. Mackay. 2024. DesignPrompt: Using
Multimodal Interaction for Design Exploration with Generative AI. In Proceedings
of the 2024 ACMDesigning Interactive Systems Conference (Copenhagen, Denmark)
(DIS ’24). Association for Computing Machinery, New York, NY, USA, 804–818.
https://doi.org/10.1145/3643834.3661588

[44] Zhenhui Peng, XingboWang, Qiushi Han, Junkai Zhu, Xiaojuan Ma, and Huamin
Qu. 2023. Storyfier: Exploring Vocabulary Learning Support with Text Generation
Models. In Proc. UIST ’23. Article 46, 16 pages. https://doi.org/10.1145/3586183.
3606786

[45] Renjie Pi, Jiahui Gao, Shizhe Diao, Rui Pan, Hanze Dong, Jipeng Zhang, Lewei
Yao, Jianhua Han, Hang Xu, Lingpeng Kong, and Tong Zhang. 2023. DetGPT:
Detect What You Need via Reasoning. arXiv:2305.14167 [cs.CV] https://arxiv.
org/abs/2305.14167

[46] K Andrew R Richards and Michael A Hemphill. 2018. A practical guide to
collaborative qualitative data analysis. Journal of Teaching in Physical education
37, 2 (2018), 225–231.

[47] Douglas C Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. 2013.
Pattern-oriented software architecture, patterns for concurrent and networked objects.
John Wiley & Sons.

[48] Hanieh Shakeri, Carman Neustaedter, and Steve DiPaola. 2021. SAGA: Col-
laborative Storytelling with GPT-3. In Companion Pub. CSCW ’21. 163–166.
https://doi.org/10.1145/3462204.3481771

[49] Alan Shalloway and James R Trott. 2004. Design patterns explained: a new per-
spective on object-oriented design. Pearson education.

[50] Ashish Sharma, Kevin Rushton, Inna Wanyin Lin, David Wadden, Khendra G Lu-
cas, Adam S Miner, Theresa Nguyen, and Tim Althoff. 2023. Cognitive reframing
of negative thoughts through human-language model interaction. arXiv preprint
arXiv:2305.02466 (2023).

[51] Ben Shneiderman and Catherine Plaisant. 2004. Designing the User Interface:
Strategies for Effective Human-Computer Interaction (4th Edition). Pearson Addison
Wesley.

[52] Mads Soegaard. 2015. Interaction Styles. Retrieved March 6, 2025 from
https://www.interaction-design.org/literature/book/the-glossary-of-human-
computer-interaction/interaction-styles.

[53] Hari Subramonyam, Roy Pea, Christopher Pondoc, Maneesh Agrawala, and
Colleen Seifert. 2024. Bridging the Gulf of Envisioning: Cognitive Challenges in
Prompt-Based Interactions with LLMs. In Proc. CHI ’24. Article 1039, 19 pages.
https://doi.org/10.1145/3613904.3642754

[54] Sangho Suh, Bryan Min, Srishti Palani, and Haijun Xia. 2023. Sensecape: Enabling
Multilevel Exploration and Sensemaking with Large Language Models. In Proc.
UIST ’23. Article 1, 18 pages. https://doi.org/10.1145/3586183.3606756

[55] Yuqian Sun, Ying Xu, Chenhang Cheng, Yihua Li, Chang Hee Lee, and Ali
Asadipour. 2023. Explore the Future Earth with Wander 2.0: AI Chatbot Driven
by Knowledge-Base Story Generation and Text-to-Image Model. In Ext. Abstracts
CHI ’23. Article 450, 5 pages. https://doi.org/10.1145/3544549.3583931

[56] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang,
Zhiyuan Chen, Jiakai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei,
and Jirong Wen. 2024. A survey on large language model based autonomous
agents. Frontiers of Computer Science 18, 6 (March 2024). https://doi.org/10.1007/
s11704-024-40231-1

[57] JasonWei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,
Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL]

[58] Yuxi Wei, Zi Wang, Yifan Lu, Chenxin Xu, Changxing Liu, Hao Zhao, Siheng
Chen, and Yanfeng Wang. 2024. Editable Scene Simulation for Autonomous
Driving via Collaborative LLM-Agents. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 15077–15087.

[59] Jiaxin Wen, Ruiqi Zhong, Pei Ke, Zhihong Shao, Hongning Wang, and Minlie
Huang. 2024. Learning Task Decomposition to Assist Humans in Competitive
Programming. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (Eds.). Association for Computational Linguistics, Bangkok,
Thailand, 11700–11723. https://doi.org/10.18653/v1/2024.acl-long.629

[60] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry
Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. 2023.
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT.
arXiv:2302.11382 [cs.SE]

[61] GuandeWu, Chen Zhao, Claudio Silva, and He He. 2024. Your Co-Workers Matter:
Evaluating Collaborative Capabilities of Language Models in Blocks World. In
Findings of the Association for Computational Linguistics ACL 2024, Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for Computational
Linguistics, Bangkok, Thailand and virtual meeting, 4941–4957. https://doi.org/
10.18653/v1/2024.findings-acl.294

[62] Jiageng Wu, Xian Wu, and Jie Yang. 2024. Guiding clinical reasoning with large
language models via knowledge seeds. arXiv preprint arXiv:2403.06609 (2024).

[63] Tongshuang Wu, Ellen Jiang, Aaron Donsbach, Jeff Gray, Alejandra Molina,
Michael Terry, and Carrie J. Cai. 2022. PromptChainer: Chaining Large Language
Model Prompts through Visual Programming. http://arxiv.org/abs/2203.06566
arXiv:2203.06566 [cs].

[64] TongshuangWu, Michael Terry, and Carrie Jun Cai. 2022. AI Chains: Transparent
and Controllable Human-AI Interaction by Chaining Large Language Model
Prompts. In CHI Conference on Human Factors in Computing Systems. ACM, New
Orleans LA USA, 1–22. https://doi.org/10.1145/3491102.3517582

[65] Yiquan Wu, Siying Zhou, Yifei Liu, Weiming Lu, Xiaozhong Liu, Yating Zhang,
Changlong Sun, Fei Wu, and Kun Kuang. 2023. Precedent-Enhanced Legal
Judgment Prediction with LLM and Domain-Model Collaboration. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing,
Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational
Linguistics, Singapore, 12060–12075. https://doi.org/10.18653/v1/2023.emnlp-
main.740

https://doi.org/10.1145/3491102.3501870
https://doi.org/10.1145/3613904.3642693
https://doi.org/10.1145/3586183.3606833
https://doi.org/10.1145/3544549.3585614
https://doi.org/10.1145/3544549.3585614
https://doi.org/10.1145/3656156.3665430
https://doi.org/10.1145/3613904.3642068
https://doi.org/10.1145/3613904.3642068
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3586182.3615978
https://doi.org/10.1145/3586182.3615978
https://doi.org/10.1145/3613904.3642861
https://doi.org/10.1145/3613904.3642861
https://doi.org/10.1016/j.ijhcs.2024.103406
https://doi.org/10.1145/3544548.3581225
https://doi.org/10.1145/3544548.3581225
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3581641.3584065
https://doi.org/10.1145/3581641.3584065
https://doi.org/10.1145/3643834.3661588
https://doi.org/10.1145/3586183.3606786
https://doi.org/10.1145/3586183.3606786
https://arxiv.org/abs/2305.14167
https://arxiv.org/abs/2305.14167
https://arxiv.org/abs/2305.14167
https://doi.org/10.1145/3462204.3481771
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction/interaction-styles
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction/interaction-styles
https://doi.org/10.1145/3613904.3642754
https://doi.org/10.1145/3586183.3606756
https://doi.org/10.1145/3544549.3583931
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/2024.acl-long.629
https://arxiv.org/abs/2302.11382
https://doi.org/10.18653/v1/2024.findings-acl.294
https://doi.org/10.18653/v1/2024.findings-acl.294
http://arxiv.org/abs/2203.06566
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.18653/v1/2023.emnlp-main.740
https://doi.org/10.18653/v1/2023.emnlp-main.740


A Taxonomy for Human-LLM Interaction Modes Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[66] Ziang Xiao, Xingdi Yuan, Q. Vera Liao, Rania Abdelghani, and Pierre-Yves
Oudeyer. 2023. Supporting Qualitative Analysis with Large Language Models:
Combining Codebook with GPT-3 for Deductive Coding. In 28th International
Conference on Intelligent User Interfaces. ACM, Sydney NSW Australia, 75–78.
https://doi.org/10.1145/3581754.3584136

[67] Xinxin Yan and Ndapa Nakashole. 2021. A Grounded Well-being Conversational
Agent with Multiple Interaction Modes: Preliminary Results. In Proceedings of
the 1st Workshop on NLP for Positive Impact, Anjalie Field, Shrimai Prabhumoye,
Maarten Sap, Zhijing Jin, Jieyu Zhao, and Chris Brockett (Eds.). Association for
Computational Linguistics, Online, 143–151. https://doi.org/10.18653/v1/2021.
nlp4posimpact-1.16

[68] Yao Yao, Zuchao Li, and Hai Zhao. 2024. GKT: A Novel Guidance-Based
Knowledge Transfer Framework For Efficient Cloud-edge Collaboration LLM
Deployment. In Findings of the Association for Computational Linguistics ACL
2024, Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for
Computational Linguistics, Bangkok, Thailand and virtual meeting, 3433–3446.
https://doi.org/10.18653/v1/2024.findings-acl.204

[69] Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel Deutch, and Jonathan
Berant. 2023. Answering Questions by Meta-Reasoning over Multiple Chains of
Thought. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Associ-
ation for Computational Linguistics, Singapore, 5942–5966. https://doi.org/10.
18653/v1/2023.emnlp-main.364

[70] J.D. Zamfirescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny Can’t Prompt: How Non-AI Experts Try (and Fail) to Design
LLM Prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. ACM, Hamburg Germany, 1–21. https://doi.org/10.1145/
3544548.3581388

[71] Kaiyan Zhang, Jianyu Wang, Ermo Hua, Biqing Qi, Ning Ding, and Bowen
Zhou. 2024. CoGenesis: A Framework Collaborating Large and Small Language
Models for Secure Context-Aware Instruction Following. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association
for Computational Linguistics, Bangkok, Thailand, 4295–4312. https://doi.org/
10.18653/v1/2024.acl-long.235

[72] Shuo Zhang, Liangming Pan, Junzhou Zhao, and William Yang Wang. 2024. The
Knowledge Alignment Problem: Bridging Human and External Knowledge for
Large Language Models. In Findings of ACL 2024. 2025–2038. https://doi.org/10.
18653/v1/2024.findings-acl.121

[73] Zheng Zhang, Jie Gao, Ranjodh Singh Dhaliwal, and Toby Jia-Jun Li. 2023. VISAR:
A Human-AI Argumentative Writing Assistant with Visual Programming and
Rapid Draft Prototyping. In Proceedings of the 36th Annual ACM Symposium on
User Interface Software and Technology (UIST ’23). Association for Computing
Machinery, New York, NY, USA, 1–30. https://doi.org/10.1145/3586183.3606800

[74] Zheng Zhang, Jie Gao, Ranjodh Singh Dhaliwal, and Toby Jia-Jun Li. 2023. VISAR:
A Human-AI Argumentative Writing Assistant with Visual Programming and
Rapid Draft Prototyping. arXiv preprint arXiv:2304.07810 (2023).

[75] Chengbo Zheng, Yuheng Wu, Chuhan Shi, Shuai Ma, Jiehui Luo, and Xiaojuan
Ma. 2023. Competent but Rigid: Identifying the Gap in Empowering AI to
Participate Equally in Group Decision-Making. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems. ACM, Hamburg Germany,
1–19. https://doi.org/10.1145/3544548.3581131

[76] Li Zhong, Zilong Wang, and Jingbo Shang. 2024. Debug like a Human: A Large
Language Model Debugger via Verifying Runtime Execution Step by Step. In Find-
ings of the Association for Computational Linguistics: ACL 2024, Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (Eds.). Association for Computational Linguistics,
Bangkok, Thailand, 851–870. https://doi.org/10.18653/v1/2024.findings-acl.49

https://doi.org/10.1145/3581754.3584136
https://doi.org/10.18653/v1/2021.nlp4posimpact-1.16
https://doi.org/10.18653/v1/2021.nlp4posimpact-1.16
https://doi.org/10.18653/v1/2024.findings-acl.204
https://doi.org/10.18653/v1/2023.emnlp-main.364
https://doi.org/10.18653/v1/2023.emnlp-main.364
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.18653/v1/2024.acl-long.235
https://doi.org/10.18653/v1/2024.acl-long.235
https://doi.org/10.18653/v1/2024.findings-acl.121
https://doi.org/10.18653/v1/2024.findings-acl.121
https://doi.org/10.1145/3586183.3606800
https://doi.org/10.1145/3544548.3581131
https://doi.org/10.18653/v1/2024.findings-acl.49

	Abstract
	1 Introduction
	2 Definitions and Scopes
	3 Method
	3.1 Identification process
	3.2 Searching and Screening Process
	3.3 First Round Qualitative Coding (N=1009)
	3.4 Second and Third Qualitative Coding
	3.5 Final Corpus

	4 Human-LLM Team Building Blocks
	4.1 8 Elements and Their Interfaces
	4.2 4 Key Elements Behaviors
	4.3 A Standard Human-LLM Interaction Process

	5 Taxonomy of Interaction Modes
	5.1 Mode 1. Standard Prompting with Promting Technique
	5.2 Mode 2. Interaction with Graphical User Interface
	5.3 Mode 3. Interaction with User Group
	5.4 Mode 4. Interaction with Multi-LLM Collaboration
	5.5 Mode 5. Interaction with Multi-modal Components
	5.6 Mode 6. Interaction with Knowledge Base
	5.7 Mode 7. Interaction with Tool Usage

	6 Taxonomy Design Space through Combination of Main Modes
	7 Application: Taxonomy As A Reference for Different Usage Purposes
	7.1 For Personalization
	7.2 For Iteration
	7.3 For Collaboration
	7.4 For Visualization & Multi-modality

	8 Case Study: Analysing current LLM Systems
	9 Discussion
	10 Limitations and Future Work
	11 Conclusion
	12 Data availability
	References

